1 |
De Benedictis A, Trezza A, Carai A, Genovese E, Procaccini E, Messina R, Randi F, Cossu S, Esposito G, Palma P, Amante P, Rizzi M, Marras CE. Robot-assisted procedures in pediatric neurosurgery. Neurosurg Focus, 2017, 42: E7.
|
2 |
Minchev G, Kronreif G, Ptacek W, Dorfer C, Micko A, Maschke S, Legnani FG, Widhalm G, Knosp E, Wolfsberger S. A novel robot-guided minimally invasive technique for brain tumor biopsies. J Neurosurg, 2019, 132: 150- 158.
|
3 |
Miller BA, Salehi A, Limbrick DD Jr, Smyth MD. Applications of a robotic stereotactic arm for pediatric epilepsy and neurooncology surgery. J Neurosurg Pediatr, 2017, 20: 364- 370.
doi: 10.3171/2017.5.PEDS1782
|
4 |
Robertson FC, Sha RM, Amich JM, Essayed W, Lal A, Lee BH, Calvachi Prieto P, Tokuda J, Weaver JC, Kirollos RW, Chen MW, Gormley WB. Frameless neuronavigation with computer vision and real-time tracking for bedside external ventricular drain placement: a cadaveric study. J Neurosurg, 2021, 136: 1475- 1484.
|
5 |
Keeble H, Lavrador JP, Pereira N, Lente K, Brogna C, Gullan R, Bhangoo R, Vergani F, Ashkan K. Electromagnetic navigation systems and intraoperative neuromonitoring: reliability and feasibility study. Oper Neurosurg (Hagerstown), 2021, 20: 373- 382.
doi: 10.1093/ons/opaa407
|
6 |
Sorriento A, Porfido MB, Mazzoleni S, Calvosa G, Tenucci M, Ciuti G, Dario P. Optical and electromagnetic tracking systems for biomedical applications: a critical review on potentialities and limitations. IEEE Rev Biomed Eng, 2020, 13: 212- 232.
doi: 10.1109/RBME.2019.2939091
|
7 |
Sulangi AJ, Husain A, Lei H, Okun J. Neuronavigation in glioma resection: current applications, challenges, and clinical outcomes. Front Surg, 2024, 11: 1430567.
doi: 10.3389/fsurg.2024.1430567
|
8 |
Łajczak P, Łajczak A. Pedal to the metal: accelerating intracerebral hemorrhage treatment with robotic-assisted surgery. A systematic review & meta-analysis of clinical effectiveness. Neurosurg Rev, 2024, 47: 799.
doi: 10.1007/s10143-024-03039-y
|
9 |
Vasconcellos FN, Almeida T, Müller Fiedler A, Fountain H, Santos Piedade G, Monaco BA, Jagid J, Cordeiro JG. Robotic-assisted stereoelectroencephalography: a systematic review and meta-analysis of safety, outcomes, and precision in refractory epilepsy patients. Cureus, 2023, 15: e47675.
|
10 |
Spennato P, Di Costanzo M, Mirone G, Cicala D, De Martino L, Onorini N, Ruggiero C, Cinalli G. Image-guided biopsy of intracranial lesions in children, with a small robotic device: a case series. Childs Nerv Syst, 2024, 40: 1681- 1688.
doi: 10.1007/s00381-024-06349-0
|
11 |
Zeng B, Meng F, Ding H, Wang G. A surgical robot with augmented reality visualization for stereoelectroencephalography electrode implantation. Int J Comput Assist Radiol Surg, 2017, 12: 1355- 1368.
doi: 10.1007/s11548-017-1634-1
|
12 |
Meng F, Zhai F, Zeng B, Ding H, Wang G. An automatic markerless registration method for neurosurgical robotics based on an optical camera. Int J Comput Assist Radiol Surg, 2018, 13: 253- 265.
doi: 10.1007/s11548-017-1675-5
|
13 |
Liu HG, Fan SY, Liu YY, Zhang H, Hu WH, Wu DL, Liu DF, Zhang K, Zhang JG, Yang AC. Preliminary application of 3D-intelligent structured light registration in robot-assisted neurosurgical operations. Zhonghua Shen Jing Wai Ke Za Zhi, 2021, 37: 880- 884.
doi: 10.3760/cma.j.cn112050-20210429-00207
|
|
刘焕光, 范世莹, 刘钰晔, 张华, 胡文瀚, 吴德龙, 刘德峰, 张凯, 张建国, 杨岸超. 3D智能结构光注册技术在机器人辅助神经外科手术中的初步应用. 中华神经外科杂志, 2021, 37: 880- 884.
doi: 10.3760/cma.j.cn112050-20210429-00207
|
14 |
Cai D, Wang X, Hu W, Mo J, Liu H, Li X, Zheng X, Ding X, An J, Hua Y, Zhang J, Zhang K, Zhang C. The 3-dimensional intelligent structured light technique: a new registration method in stereotactic neurosurgery. Oper Neurosurg (Hagerstown), 2024, 27: 566- 572.
doi: 10.1227/ons.0000000000001184
|
15 |
Mei S, Yu K, Ren Z, Hu Y, Guo S, Li Y, Li J. Techniques of frameless robot-assisted deep brain stimulation and accuracy compared with the frame-based technique. Brain Sci, 2022, 12: 906.
doi: 10.3390/brainsci12070906
|
16 |
Yao Y, Hu W, Zhang C, Wang X, Zheng Z, Sang L, Shao X, Zhang K. A comparison between robot-guided and stereotactic frame-based stereoelectroencephalography (SEEG) electrode implantation for drug-resistant epilepsy. J Robot Surg, 2023, 17: 1013- 1020.
|
17 |
Ueda H, Suzuki R, Nakazawa A, Kurose Y, Marinho MM, Shono N, Nakatomi H, Saito N, Watanabe E, Morita A, Harada K, Sugita N, Mitsuishi M. Toward autonomous collision avoidance for robotic neurosurgery in deep and narrow spaces in the brain. Procedia CIRP, 2017, 65: 110- 114.
doi: 10.1016/j.procir.2017.04.027
|
18 |
Zhou S, Gao Y, Li R, Wang H, Zhang M, Guo Y, Cui W, Brown KG, Han C, Shi L, Liu H, Zhang J, Li Y, Meng F. Neurosurgical robots in China: state of the art and future prospect. iScience, 2023, 26: 107983.
doi: 10.1016/j.isci.2023.107983
|
19 |
Zhang D, Cui X, Zheng J, Zhang S, Wang M, Lu W, Sang L, Li W. Neurosurgical robot-assistant stereoelectroencephalography system: operability and accuracy. Brain Behav, 2021, 11: e2347.
doi: 10.1002/brb3.2347
|
20 |
Qiao L, Yu T, Ni DY, Wang XY, Xu CP, Zhang GJ, Li YJ. Application of robot-assisted stereoencephalography electrode implantation in epilepsy surgery. Zhonghua Shen Jing Wai Ke Za Zhi, 2019, 35: 1049- 1053.
doi: 10.3760/cma.j.issn.1001-2346.2019.10.018
|
|
乔梁, 遇涛, 倪端宇, 王雪原, 徐翠萍, 张国君, 李勇杰. 机器人辅助立体脑电图电极植入在癫痫外科中的应用. 中华神经外科杂志, 2019, 35: 1049- 1053.
doi: 10.3760/cma.j.issn.1001-2346.2019.10.018
|
21 |
Hu Y, Cai P, Zhang H, Adilijiang A, Peng J, Li Y, Che S, Lan F, Liu C. A comparation between frame-based and robot-assisted in stereotactic biopsy. Front Neurol, 2022, 13: 928070.
doi: 10.3389/fneur.2022.928070
|
22 |
Wu S, Wang J, Gao P, Liu W, Hu F, Jiang W, Lei T, Shu K. A comparison of the efficacy, safety, and duration of frame-based and Remebot robot-assisted frameless stereotactic biopsy. Br J Neurosurg, 2021, 35: 319- 323.
doi: 10.1080/02688697.2020.1812519
|
23 |
Ho AL, Ali R, Connolly ID, Henderson JM, Dhall R, Stein SC, Halpern CH. Awake versus asleep deep brain stimulation for Parkinson's disease: a critical comparison and meta-analysis. J Neurol Neurosurg Psychiatry, 2018, 89: 687- 691.
doi: 10.1136/jnnp-2016-314500
|
24 |
Functional Neurosurgery Group, Neurosurgery Branch, Chinese Medical Association; Parkinson's Disease and Movement Disorders Group, Neurology Branch, Chinese Medical Association; Parkinson's Disease and Movement Disorders Group, Neurologist Branch, Chinese Medical Doctor Association; China Neuromodulation Union; China Expert Group on Deep Brain Stimulation Therapy for Parkinson's Disease. Expert consensus on deep brain stimulation therapy for Parkinson's disease in China (second edition)[J]. Zhonghua Shen Jing Wai Ke Za Zhi, 2020, 36: 325-337.
|
|
中华医学会神经外科学分会功能神经外科学组, 中华医学会神经病学分会帕金森病及运动障碍学组, 中国医师协会神经内科医师分会帕金森病及运动障碍学组, 中国神经调控联盟, 中国帕金森病脑深部电刺激疗法专家组. 中国帕金森病脑深部电刺激疗法专家共识(第二版)[J]. 中华神经外科杂志, 2020, 36: 325-337.
|
25 |
Functional Neurosurgery Expert Committee, Chinese Medical Doctor Association; Functional Neurosurgery Group, Neurosurgery Branch, Chinese Medical Association; Neuromodulation Professional Committee, Chinese Medical Doctor Association; Minimally Invasive Neurosurgery Professional Committee, Chinese Research Hospital Association; National Expert Steering Committee on Neurosurgery Robot. Chinese expert consensus on neurosurgery robot - assisted deep brain stimulation[J]. Zhongguo Wei Qin Xi Shen Jing Wai Ke Za Zhi, 2021, 26: 291-295.
|
|
中国医师协会功能神经外科专家委员会, 中华医学会神经外科学分会功能神经外科学组, 中国医师协会神经调控专业委员会, 中国研究型医院学会神经微侵袭治疗专业委员会, 国家神经外科手术机器人专家指导委员会. 神经外科手术机器人辅助脑深部电刺激手术的中国专家共识[J]. 中国微侵袭神经外科杂志, 2021, 26: 291-295.
|
26 |
Marcus HJ, Vakharia VN, Ourselin S, Duncan J, Tisdall M, Aquilina K. Robot-assisted stereotactic brain biopsy: systematic review and bibliometric analysis. Childs Nerv Syst, 2018, 34: 1299- 1309.
doi: 10.1007/s00381-018-3821-y
|
27 |
Xiong R, Li F, Chen X. Robot-assisted neurosurgery versus conventional treatment for intracerebral hemorrhage: a systematic review and meta-analysis. J Clin Neurosci, 2020, 82(Pt B): 252- 259.
|
28 |
Tang Z, Huang W, Chen Q, Guo C, Zheng K, Wei W, Jiang Q, Yang R. Curative effect analysis of robot-assisted drainage surgery in treatment of spontaneous hypertensive brainstem hemorrhage. Front Neurol, 2024, 15: 1352949.
doi: 10.3389/fneur.2024.1352949
|
29 |
Gupta M, Chan TM, Santiago-Dieppa DR, Yekula A, Sanchez CE, Elster JD, Crawford JR, Levy ML, Gonda DD. Robot-assisted stereotactic biopsy of pediatric brainstem and thalamic lesions. J Neurosurg Pediatr, 2020, 27: 317- 324.
|
30 |
Luo L, He CL, Li W, Tang XP. Systematic review and meta-analysis of ROSA vs. conventional therapy for intracerebral hemorrhage. J Robot Surg, 2024, 18: 326.
doi: 10.1007/s11701-024-02074-7
|
31 |
Wu C, Schwalb JM, Rosenow JM, McKhann GM 2nd, Neimat JS, American Society for Stereotactic and Functional Neurosurgeons. The American Society for Stereotactic and Functional Neurosurgery position statement on laser interstitial thermal therapy for the treatment of drug-resistant epilepsy. Neurosurgery, 2022, 90: 155- 160.
doi: 10.1227/NEU.0000000000001799
|
32 |
Dabecco R, Gigliotti MJ, Mao G, Myers D, Xu L, Lee P, Ranjan T, Aziz K, Yu A. Laser interstitial thermal therapy (LITT) for intracranial lesions: a single-institutional series, outcomes, and review of the literature. Br J Neurosurg, 2024, 38: 632- 638.
doi: 10.1080/02688697.2021.1947972
|
33 |
Chen C, Lee I, Tatsui C, Elder T, Sloan AE. Laser interstitial thermotherapy (LITT) for the treatment of tumors of the brain and spine: a brief review. J Neurooncol, 2021, 151: 429- 442.
doi: 10.1007/s11060-020-03652-z
|
34 |
McGrath K, Frain M, Hey G, Rahman M. Complications following laser interstitial thermal therapy: a review. Neurochirurgie, 2025, 71: 101604.
doi: 10.1016/j.neuchi.2024.101604
|
35 |
Gurses ME, Khalafallah AM, Gecici NN, Gökalp E, Shah KH, DeLong CA, Susic N, Brochu B, Lu VM, Shah AH, Ivan ME, Komotar RJ. The safety, accuracy, and feasibility of robotic assistance in neuro-oncological surgery. Neurosurg Focus, 2024, 57: E3.
|
36 |
Zhong J. Targeting the foramen ovale is the point of percutaneous balloon compression? Comment on: robot-assisted percutaneous balloon compression for trigeminal neuralgia-preliminary experiences. BMC Neurol, 2024, 24: 79.
doi: 10.1186/s12883-024-03576-5
|
37 |
Ren YE, Liu XH, Cheng ZX, Fan XC, Fan BF, Huang D, Hu YS, Jiang ZB, Luo F, Ma K, Qian T, Sun T, Sun HT, Yang LQ, Yu WH, Zhong J, Zhao ZM, Zhou HC, Liu GZ. Chinese experts consensus on percutaneous balloon compression for treatment of trigeminal neuralgia (2022 edition). Zhonghua Teng Tong Xue Za Zhi, 2022, 18: 437- 448.
doi: 10.3760/cma.j.cn101658-20220531-00129
|
|
任玉娥, 刘小会, 程志祥, 樊肖冲, 樊碧发, 黄东, 胡永生, 蒋宗滨, 罗芳, 马柯, 钱涛, 孙涛, 孙洪涛, 杨立强, 俞文华, 仲骏, 赵宗茂, 周华成, 刘广召. 经皮球囊压迫术治疗三叉神经痛中国专家共识(2022版). 中华疼痛学杂志, 2022, 18: 437- 448.
doi: 10.3760/cma.j.cn101658-20220531-00129
|
38 |
Tan K, Li J, Peng Y, Wu W, Yang Z, Wang Y, Wang Y. Robot- assisted percutaneous balloon compression in elderly patients with trigeminal neuralgia. J Pain Res, 2023, 16: 1161- 1168.
doi: 10.2147/JPR.S396680
|
39 |
Liu Q, Chen W, Wang C, Chen B, Chen W, Lu Y, Zhang C, Xu J. Robot-assisted stylomastoid foramen puncture and radiofrequency ablation for hemifacial spasm treatment: clinical outcomes and technique assessment. Neurosurg Focus, 2024, 57: E8.
|
40 |
Kohlhase K, Zöllner JP, Tandon N, Strzelczyk A, Rosenow F. Comparison of minimally invasive and traditional surgical approaches for refractory mesial temporal lobe epilepsy: a systematic review and meta-analysis of outcomes. Epilepsia, 2021, 62: 831- 845.
doi: 10.1111/epi.16846
|
41 |
Patel A, Hux N, Virtanen PS, Budnick H, Kazi F, Tailor JK. Frameless stereotactic biopsy of brainstem tumors using the Stealth Autoguide: a technical note. Oper Neurosurg (Hagerstown), 2025, 28: 558- 563.
doi: 10.1227/ons.0000000000001314
|
42 |
Atai NA, Mehta VA. Initial United States experience with Medtronic Stealth Autoguide cranial robotic guidance platform. J Neurosurg, 2024, 141: 1520- 1526.
doi: 10.3171/2024.4.JNS232701
|
43 |
Tian HQ, Wu DM, Wang JH, Du ZJ, Sun LN. Visualization and real-time tracking technologies of the probe used in surgical navigation based on electromagnetic positioning. Ji Qi Ren, 2011, 33: 59- 65.
|
|
田和强, 吴冬梅, 王继虎, 杜志江, 孙立宁. 基于电磁定位的手术导航探针可视化与实时跟踪技术. 机器人, 2011, 33: 59- 65.
|
44 |
Pei DT, Huang DQ, Chen J, Zhang JY. Research status and development trend of surgical navigation system. Lin Chuang Yi Xue Gong Cheng, 2017, 24: 1326- 1328.
doi: 10.3969/j.issn.1674-4659.2017.09.1326
|
|
裴大婷, 黄德群, 陈军, 张佳泳. 手术导航系统的研究现状与发展趋势. 临床医学工程, 2017, 24: 1326- 1328.
doi: 10.3969/j.issn.1674-4659.2017.09.1326
|
45 |
Li H, Yan W, Liu D, Qian L, Yang Y, Liu Y, Zhao Z, Ding H, Wang G. EVD surgical guidance with retro-reflective tool tracking and spatial reconstruction using head-mounted augmented reality device[J]. IEEE Trans Vis Comput Graph, 2024. [Epub ahead of print]
|
46 |
Martin-Gomez A, Li H, Song T, Yang S, Wang G, Ding H, Navab N, Zhao Z, Armand M. STTAR: surgical tool tracking using off-the-shelf augmented reality head-mounted displays. IEEE Trans Vis Comput Graph, 2024, 30: 3578- 3593.
doi: 10.1109/TVCG.2023.3238309
|
47 |
Gerritsen JKW, Broekman MLD, De Vleeschouwer S, Schucht P, Nahed BV, Berger MS, Vincent AJPE. Safe surgery for glioblastoma: recent advances and modern challenges. Neurooncol Pract, 2022, 9: 364- 379.
|
48 |
Dono A, Zhu P, Takayasu T, Arevalo O, Riascos R, Tandon N, Ballester LY, Esquenazi Y. Extent of resection thresholds in molecular subgroups of newly diagnosed isocitrate dehydrogenase-wildtype glioblastoma. Neurosurgery, 2024, 95: 932- 940.
doi: 10.1227/neu.0000000000002964
|
49 |
Karschnia P, Young JS, Dono A, Häni L, Sciortino T, Bruno F, Juenger ST, Teske N, Morshed RA, Haddad AF, Zhang Y, Stoecklein S, Weller M, Vogelbaum MA, Beck J, Tandon N, Hervey-Jumper S, Molinaro AM, Rudà R, Bello L, Schnell O, Esquenazi Y, Ruge MI, Grau SJ, Berger MS, Chang SM, van den Bent M, Tonn JC. Prognostic validation of a new classification system for extent of resection in glioblastoma: a report of the RANO resect group. Neuro Oncol, 2023, 25: 940- 954.
doi: 10.1093/neuonc/noac193
|
50 |
Mahroq OA, Ganiyu S, Nimmagadda R, Priyatha V, Shaik BF, Ernest-Okonofua EO, Khan S. Neuro navigation versus conventional spinal techniques in analyzing nerve injury and anatomical accuracy: a systematic review. Cureus, 2024, 16: e68760.
|
51 |
Medical Policy and Administration Agency, National Health Commission of PRC, Glioma Professional Committee, China Anti- Cancer Association, Glioma Professional Committee, Chinese Medical Doctor Association. Guidelines for the diagnosis and treatment of glioma (2022 edition). Zhonghua Shen Jing Wai Ke Za Zhi, 2022, 38: 757- 777.
doi: 10.3760/cma.j.cn112050-20220510-00239
|
|
国家卫生健康委员会医政医管局, 中国抗癌协会脑胶质瘤专业委员会, 中国医师协会脑胶质瘤专业委员会. 脑胶质瘤诊疗指南(2022版). 中华神经外科杂志, 2022, 38: 757- 777.
doi: 10.3760/cma.j.cn112050-20220510-00239
|
52 |
|
53 |
Srivastava GR, Gera P, Rani R, Jaiswal G, Sharma A. A novel method for glioma segmentation and classification on pre-operative MRI scans using 3D U -Nets and transfer learning. Multimed Tools Appl, 2025, 84: 3569- 3609.
|
54 |
Wang H, Luo X, Chen W, Tang Q, Xin M, Wang Q, Zhu L. Advancing UWF-SLO vessel segmentation with source-free active domain adaptation and a novel multi-center dataset[C]//Linguraru MG, Dou Q, Feragen A, Giannarou S, Glocker B, Lekadir K, Schnabel JA. Medical image computing and computer assisted intervention: MICCAI 2024, Marrakesh, 2024. Cham: Springer, 2024: 75-85.
|
55 |
Henschel L, Conjeti S, Estrada S, Diers K, Fischl B, Reuter M. FastSurfer: a fast and accurate deep learning based neuroimaging pipeline. Neuroimage, 2020, 219: 117012.
doi: 10.1016/j.neuroimage.2020.117012
|
56 |
Wang S, Zhao X, Zhang Y, Zhao Y, Zhao Z, Ding H, Chen T, Qiao S. DPMNet: dual-path MLP-based network for aneurysm image segmentation[C]//Linguraru MG, Dou Q, Feragen A, Giannarou S, Glocker B, Lekadir K, Schnabel JA. Medical image computing and computer assisted intervention: MICCAI 2024, Marrakesh, 2024. Cham: Springer, 2024: 245-254.
|
57 |
Płotka S, Chrabaszcz M, Biecek P. Swin SMT: global sequential modeling for enhancing 3D medical image segmentation[C]//Linguraru MG, Dou Q, Feragen A, Giannarou S, Glocker B, Lekadir K, Schnabel JA. Medical image computing and computer assisted intervention: MICCAI 2024, Marrakesh, 2024. Cham: Springer, 2024: 689-698.
|
58 |
Guo X, Xing H, Pan H, Wang Y, Chen W, Wang H, Zhang X, Liu J, Xu N, Wang Y, Ma W. Neuronavigation combined with intraoperative ultrasound and intraoperative magnetic resonance imaging versus neuronavigation alone in diffuse glioma surgery. World Neurosurg, 2024, 192: e355- e365.
doi: 10.1016/j.wneu.2024.09.105
|
59 |
Campagnaro L, Bonaudo C, Capelli F, Della Puppa A. Microscope neuronavigation-guided microsurgical fenestration of quadrigeminal cistern arachnoid cysts: how I do it. Acta Neurochir (Wien), 2023, 165: 2561- 2565.
|
60 |
Luzzi S, Giotta Lucifero A. Microscope -based augmented reality with diffusion tensor imaging and fluorescein in insular glioma resection. Neurosurg Focus Video, 2022, 6: V10.
|
61 |
Campisi BM, Costanzo R, Gulino V, Avallone C, Noto M, Bonosi L, Brunasso L, Scalia G, Iacopino DG, Maugeri R. The role of augmented reality neuronavigation in transsphenoidal surgery: a systematic review. Brain Sci, 2023, 13: 1695.
doi: 10.3390/brainsci13121695
|
62 |
Lee CC, Chou CC, Hsiao FJ, Chen YH, Lin CF, Chen CJ, Peng SJ, Liu HL, Yu HY. Pilot study of focused ultrasound for drug-resistant epilepsy. Epilepsia, 2022, 63: 162- 175.
doi: 10.1111/epi.17105
|
63 |
Lioumis P, Rosanova M. The role of neuronavigation in TMS-EEG studies: current applications and future perspectives. J Neurosci Methods, 2022, 380: 109677.
doi: 10.1016/j.jneumeth.2022.109677
|
64 |
Zhang TQ, Wang MR, Jiang YQ, Huang JH. Research progress in the digitalization formulation of puncture path planning in ablation treatment of liver tumors. Jie Ru Fang She Xue Za Zhi, 2023, 32: 400- 403.
doi: 10.3969/j.issn.1008-794X.2023.04.020
|
|
张天奇, 王穆荣, 江艺泉, 黄金华. 肝肿瘤消融穿刺路径规划数字化研究进展. 介入放射学杂志, 2023, 32: 400- 403.
doi: 10.3969/j.issn.1008-794X.2023.04.020
|
65 |
Deng H, Cheng F, Cheng SP. The application advancement of artificial intelligence in urinary calculus. Wei Chuang Mi Niao Wai Ke Za Zhi, 2023, 12: 208- 211.
|
|
邓昊, 程帆, 成少平. 人工智能在泌尿系结石中的应用进展. 微创泌尿外科杂志, 2023, 12: 208- 211.
|
66 |
Yao ZC. Research on instrument positioning and autonomous grinding planning of craniotomy robot[D]. Tianjin: Tianjin University of Technology, 2023.
|
|
姚展成. 开颅手术机器人的器械定位与自主磨削规划研究[D]. 天津: 天津理工大学, 2023.
|