1 |
Xu F , Ming D , Jung TP , Xu P , Xu M . Editorial: the application of artificial intelligence in brain-computer interface and neural system rehabilitation. Front Neurosci, 2023, 17: 1290961.
URL
|
2 |
Reis J , Melão N . Digital transformation: a meta-review and guidelines for future research. Heliyon, 2023, 9: e12834.
URL
|
3 |
Awuah WA , Adebusoye FT , Wellington J , David L , Salam A , Weng Yee AL , Lansiaux E , Yarlagadda R , Garg T , Abdul-Rahman T , Kalmanovich J , Miteu GD , Kundu M , Mykolaivna NI . Recent outcomes and challenges of artificial intelligence, machine learning, and deep learning in neurosurgery. World Neurosurg X, 2024, 23: 100301.
URL
|
4 |
Tangsrivimol JA , Schonfeld E , Zhang M , Veeravagu A , Smith TR , Härtl R , Lawton MT , El-Sherbini AH , Prevedello DM , Glicksberg BS , Krittanawong C . Artificial intelligence in neurosurgery: a state-of-the-art review from past to future. Diagnostics (Basel), 2023, 13: 2429.
doi: 10.3390/diagnostics13142429
|
5 |
Dong JH , Huang ZQ . Precise liver resection——new concept of liver surgery in 21st century. Zhonghua Wai Ke Za Zhi, 2009, 47: 1601- 1605.
|
|
董家鸿, 黄志强. 精准肝切除——21世纪肝脏外科新理念. 中华外科杂志, 2009, 47: 1601- 1605.
|
6 |
Dong J , Yang S , Zeng J , Cai S , Ji W , Duan W , Zhang A , Ren W , Xu Y , Tan J , Bu X , Zhang N , Wang X , Wang X , Meng X , Jiang K , Gu W , Huang Z . Precision in liver surgery. Semin Liver Dis, 2013, 33: 189- 203.
|
7 |
Dong JH , Zhang N . Precision surgery. Zhonghua Wai Ke Za Zhi, 2015, 53: 321- 323.
|
|
董家鸿, 张宁. 精准外科. 中华外科杂志, 2015, 53: 321- 323.
|
8 |
Buchlak QD , Esmaili N , Leveque JC , Bennett C , Farrokhi F , Piccardi M . Machine learning applications to neuroimaging for glioma detection and classification: an artificial intelligence augmented systematic review. J Clin Neurosci, 2021, 89: 177- 198.
|
9 |
McAvoy M , Prieto PC , Kaczmarzyk JR , Fernández IS , McNulty J , Smith T , Yu KH , Gormley WB , Arnaout O . Classification of glioblastoma versus primary central nervous system lymphoma using convolutional neural networks. Sci Rep, 2021, 11: 15219.
|
10 |
Boaro A , Kaczmarzyk JR , Kavouridis VK , Harary M , Mammi M , Dawood H , Shea A , Cho EY , Juvekar P , Noh T , Rana A , Ghosh S , Arnaout O . Deep neural networks allow expert-level brain meningioma segmentation and present potential for improvement of clinical practice. Sci Rep, 2022, 12: 15462.
URL
|
11 |
Zhou H , Chang K , Bai HX , Xiao B , Su C , Bi WL , Zhang PJ , Senders JT , Vallières M , Kavouridis VK , Boaro A , Arnaout O , Yang L , Huang RY . Machine learning reveals multimodal MRI patterns predictive of isocitrate dehydrogenase and 1p/19q status in diffuse low- and high-grade gliomas. J Neurooncol, 2019, 142: 299- 307.
URL
|
12 |
Tonutti M , Gras G , Yang GZ . A machine learning approach for real-time modelling of tissue deformation in image-guided neurosurgery. Artif Intell Med, 2017, 80: 39- 47.
URL
|
13 |
Shen B , Zhang Z , Shi X , Cao C , Zhang Z , Hu Z , Ji N , Tian J . Real-time intraoperative glioma diagnosis using fluorescence imaging and deep convolutional neural networks. Eur J Nucl Med Mol Imaging, 2021, 48: 3482- 3492.
URL
|
14 |
Hollon T , Orringer DA . Label-free brain tumor imaging using Raman-based methods. J Neurooncol, 2021, 151: 393- 402.
URL
|
15 |
Fatima N , Zheng H , Massaad E , Hadzipasic M , Shankar GM , Shin JH . Development and validation of machine learning algorithms for predicting adverse events after surgery for lumbar degenerative spondylolisthesis. World Neurosurg, 2020, 140: 627- 641.
|
16 |
Karhade AV , Bongers MER , Groot OQ , Cha TD , Doorly TP , Fogel HA , Hershman SH , Tobert DG , Srivastava SD , Bono CM , Kang JD , Harris MB , Schwab JH . Development of machine learning and natural language processing algorithms for preoperative prediction and automated identification of intraoperative vascular injury in anterior lumbar spine surgery. Spine J, 2021, 21: 1635- 1642.
URL
|
17 |
Ames CP , Smith JS , Pellisé F , Kelly M , Alanay A , Acaroğlu E , Pérez-Grueso FJS , Kleinstück F , Obeid I , Vila-Casademunt A , Shaffrey CI Jr , Burton D , Lafage V , Schwab F , Shaffrey CI Sr , Bess S , Serra-Burriel M , European Spine Study Group; International Spine Study Group . Artificial intelligence based hierarchical clustering of patient types and intervention categories in adult spinal deformity surgery: towards a new classification scheme that predicts quality and value. Spine (Phila Pa 1976), 2019, 44: 915- 926.
|
18 |
Karhade AV , Ogink PT , Thio QCBS , Cha TD , Gormley WB , Hershman SH , Smith TR , Mao J , Schoenfeld AJ , Bono CM , Schwab JH . Development of machine learning algorithms for prediction of prolonged opioid prescription after surgery for lumbar disc herniation. Spine J, 2019, 19: 1764- 1771.
|
19 |
Goedmakers CMW , Lak AM , Duey AH , Senko AW , Arnaout O , Groff MW , Smith TR , Vleggeert-Lankamp CLA , Zaidi HA , Rana A , Boaro A . Deep learning for adjacent segment disease at preoperative MRI for cervical radiculopathy. Radiology, 2021, 301: 664- 671.
URL
|
20 |
Grigsby J , Kramer RE , Schneiders JL , Gates JR , Brewster Smith W . Predicting outcome of anterior temporal lobectomy using simulated neural networks. Epilepsia, 1998, 39: 61- 66.
|
21 |
Torlay L , Perrone-Bertolotti M , Thomas E , Baciu M . Machine learning: XGBoost analysis of language networks to classify patients with epilepsy. Brain Inform, 2017, 4: 159- 169.
|
22 |
Memarian N , Kim S , Dewar S , Engel J Jr , Staba RJ . Multimodal data and machine learning for surgery outcome prediction in complicated cases of mesial temporal lobe epilepsy. Comput Biol Med, 2015, 64: 67- 78.
|
23 |
Larivière S , Weng Y , Vos de Wael R , Royer J , Frauscher B , Wang Z , Bernasconi A , Bernasconi N , Schrader DV , Zhang Z , Bernhardt BC . Functional connectome contractions in temporal lobe epilepsy: microstructural underpinnings and predictors of surgical outcome. Epilepsia, 2020, 61: 1221- 1233.
|
24 |
Park A , Chute C , Rajpurkar P , Lou J , Ball RL , Shpanskaya K , Jabarkheel R , Kim LH , McKenna E , Tseng J , Ni J , Wishah F , Wittber F , Hong DS , Wilson TJ , Halabi S , Basu S , Patel BN , Lungren MP , Ng AY , Yeom KW . Deep learning-assisted diagnosis of cerebral aneurysms using the HeadXNet model. JAMA Netw Open, 2019, 2: e195600.
|
25 |
Silva MA , Patel J , Kavouridis V , Gallerani T , Beers A , Chang K , Hoebel KV , Brown J , See AP , Gormley WB , Aziz-Sultan MA , Kalpathy-Cramer J , Arnaout O , Patel NJ . Machine learning models can detect aneurysm rupture and identify clinical features associated with rupture. World Neurosurg, 2019, 131: e46- e51.
|
26 |
Asadi H , Kok HK , Looby S , Brennan P , O'Hare A , Thornton J . Outcomes and complications after endovascular treatment of brain arteriovenous malformations: a prognostication attempt using artificial intelligence. World Neurosurg, 2016, 96: 562- 569.
|
27 |
Chen RS . Prospects for the application of healthcare big data combined with large language models. Sichuan Da Xue Xue Bao (Yi Xue Ban), 2023, 54: 855- 856.
|
|
陈润生. 医疗大数据结合大语言模型的应用展望. 四川大学学报(医学版), 2023, 54: 855- 856.
|