1 |
Gutman B , Shmilovitch AH , Aran D , Shelly S . Twenty-five years of AI in neurology: the journey of predictive medicine and biological breakthroughs. JMIR Neurotech, 2024, 3: e59556.
|
2 |
Eberhart R, Kennedy J. A new optimizer using particle swarm theory[C]//MHS'95: proceedings of the sixth international symposium on micro machine and human science, Nagoya, 1995. Nagoya: IEEE, 2002: 39-43.
|
3 |
Mormann F , Andrzejak RG , Elger CE , Lehnertz K . Seizure prediction: the long and winding road. Brain, 2007, 130 (Pt 2): 314- 333.
|
4 |
Litvak V , Jha A , Eusebio A , Oostenveld R , Foltynie T , Limousin P , Zrinzo L , Hariz MI , Friston K , Brown P . Resting oscillatory cortico-subthalamic connectivity in patients with Parkinson's disease. Brain, 2011, 134 (Pt 2): 359- 374.
|
5 |
Shahriari K, ShahriariM. IEEE standard review. Ethically aligned design: a vision for prioritizing human wellbeing with artificial intelligence and autonomous systems[C]//2017 IEEE Canada international humanitarian technology conference (IHTC), Toronto, 2017. Toronto: IEEE, 2017: 197-201.
|
6 |
LeCun Y , Bengio Y , Hinton G . Deep learning. Nature, 2015, 521: 436- 444.
|
7 |
Zhang S , Qin Y , Wang J , Yu Y , Wu L , Zhang T . Noninvasive electrical stimulation neuromodulation and digital brain technology: a review. Biomedicines, 2023, 11: 1513.
|
8 |
Nicolas-Alonso LF , Gomez-Gil J . Brain computer interfaces, a review. Sensors (Basel), 2012, 12: 1211- 1279.
doi: 10.3390/s120201211
|
9 |
Topol EJ . High-performance medicine: the convergence of human and artificial intelligence. Nat Med, 2019, 25: 44- 56.
doi: 10.1038/s41591-018-0300-7
|
10 |
Senadheera I , Hettiarachchi P , Haslam B , Nawaratne R , Sheehan J , Lockwood KJ , Alahakoon D , Carey LM . AI applications in adult stroke recovery and rehabilitation: a scoping review using AI. Sensors (Basel), 2024, 24: 6585.
|
11 |
Schönecker S , Palleis C , Franzmeier N , Katzdobler S , Ferschmann C , Schuster S , Finze A , Scheifele M , Prix C , Fietzek U , Weidinger E , Nübling G , Vöglein J , Patt M , Barthel H , Sabri O , Danek A , Höglinger GU , Brendel M , Levin J , German Imaging Initiative for Tauopathies GⅡ4T . Symptomatology in 4-repeat tauopathies is associated with data-driven topology of [18F]-PI-2620 tau-PET signal. Neuroimage Clin, 2023, 38: 103402.
|
12 |
Shi J , Zheng X , Li Y , Zhang Q , Ying S . Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer's disease. IEEE J Biomed Health Inform, 2018, 22: 173- 183.
doi: 10.1109/JBHI.2017.2655720
|
13 |
Huang X , Liu Y , Li Y , Qi K , Gao A , Zheng B , Liang D , Long X . Deep learning-based multiclass brain tissue segmentation in fetal MRIs. Sensors (Basel), 2023, 23: 655.
doi: 10.3390/s23020655
|
14 |
Payette K , de Dumast P , Kebiri H , Ezhov I , Paetzold JC , Shit S , Iqbal A , Khan R , Kottke R , Grehten P , Ji H , Lanczi L , Nagy M , Beresova M , Nguyen TD , Natalucci G , Karayannis T , Menze B , Bach Cuadra M , Jakab A . An automatic multi-tissue human fetal brain segmentation benchmark using the Fetal Tissue Annotation Dataset. Sci Data, 2021, 8: 167.
doi: 10.1038/s41597-021-00946-3
|
15 |
Shost MD , Meade SM , Steinmetz MP , Mroz TE , Habboub G . Surgical classification using natural language processing of informed consent forms in spine surgery. Neurosurg Focus, 2023, 54: E10.
|
16 |
Franke K , Ziegler G , Klöppel S , Gaser C , Alzheimer's Disease Neuroimaging Initiative . Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. Neuroimage, 2010, 50: 883- 892.
doi: 10.1016/j.neuroimage.2010.01.005
|
17 |
Cole JH , Poudel RPK , Tsagkrasoulis D , Caan MWA , Steves C , Spector TD , Montana G . Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. Neuroimage, 2017, 163: 115- 124.
doi: 10.1016/j.neuroimage.2017.07.059
|
18 |
Alfaro-Almagro F , Jenkinson M , Bangerter NK , Andersson JLR , Griffanti L , Douaud G , Sotiropoulos SN , Jbabdi S , Hernandez-Fernandez M , Vallee E , Vidaurre D , Webster M , McCarthy P , Rorden C , Daducci A , Alexander DC , Zhang H , Dragonu I , Matthews PM , Miller KL , Smith SM . Image processing and Quality Control for the first 10, 000 brain imaging datasets from UK Biobank. Neuroimage, 2018, 166: 400- 424.
|
19 |
Peng H , Gong W , Beckmann CF , Vedaldi A , Smith SM . Accurate brain age prediction with lightweight deep neural networks. Med Image Anal, 2021, 68: 101871.
|
20 |
Popescu SG , Glocker B , Sharp DJ , Cole JH . Local brain-age: a U-Net model. Front Aging Neurosci, 2021, 13: 761954.
|
21 |
Ghosh N , Sinha K , Sil PC . A review on the new age methodologies for early detection of Alzheimer's and Parkinson's disease. Basic Clin Pharmacol Toxicol, 2024, 134: 602- 613.
|
22 |
Fu Y , Huang Y , Zhang Z , Dong S , Xue L , Niu M , Li Y , Shi Z , Wang Y , Zhang H , Tian M , Zhuo C . OTFPF: optimal transport based feature pyramid fusion network for brain age estimation. Information Fusion, 2023, 100: 101931.
|
23 |
Tripathi SL, Dasari LP, Wijayanto I, Ghai D, Mahmud M. 8: assistive technology for neuro-rehabilitation applications using machine learning techniques[M]//Tripathi SL, Balas VE, Mahmud M, Banerjee S. Machine learning models and architectures for biomedical signal processing. San Diego: Academic Press, 2025: 179-191.
|
24 |
Gupta R. Chapter 1. AI-based technologies, challenges, and solutions for neurorehabilitation: a systematic mapping[M]//Hemanth DJ. Computational intelligence and deep learning methods for neuro-rehabilitation applications. San Diego: Academic Press, 2024: 1-25.
|
25 |
Zhu Z , Hu W , Chen R , Xiong R , Wang W , Shang X , Chen Y , Kiburg K , Shi D , He S , Huang Y , Zhang X , Tang S , Zeng J , Yu H , Yang X , He M . Retinal age gap as a predictive biomarker of stroke risk. BMC Med, 2022, 20: 466.
|
26 |
Montella A , Tranfa M , Scaravilli A , Barkhof F , Brunetti A , Cole J , Gravina M , Marrone S , Riccio D , Riccio E , Sansone C , Spinelli L , Petracca M , Pisani A , Cocozza S , Pontillo G . Assessing brain involvement in Fabry disease with deep learning and the brain-age paradigm. Hum Brain Mapp, 2024, 45: e26599.
|
27 |
Kim WS , Heo DW , Maeng J , Shen J , Tsogt U , Odkhuu S , Zhang X , Cheraghi S , Kim SW , Ham BJ , Rami FZ , Sui J , Kang CY , Suk HI , Chung YC . Deep learning-based brain age prediction in patients with schizophrenia spectrum disorders. Schizophr Bull, 2024, 50: 804- 814.
|
28 |
Isensee F , Jaeger PF , Kohl SAA , Petersen J , Maier-Hein KH . nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods, 2021, 18: 203- 211.
|
29 |
Pan D , Zeng A , Yang B , Lai G , Hu B , Song X , Jiang T , Alzheimer's Disease Neuroimaging Initiative (ADNI) . Deep learning for brain MRI confirms patterned pathological progression in Alzheimer's disease. Adv Sci (Weinh), 2023, 10: e2204717.
|
30 |
Mehmood A , Abugabah A , AlZubi AA , Sanzogni L . Early diagnosis of Alzheimer's disease based on convolutional neural networks. Comput Syst Sci Eng, 2022, 43: 305- 315.
|
31 |
Hasselgren C , Oprea TI . Artificial intelligence for drug discovery: are we there yet?. Annu Rev Pharmacol Toxicol, 2024, 64: 527- 550.
|
32 |
Nada H , Gul AR , Elkamhawy A , Kim S , Kim M , Choi Y , Park TJ , Lee K . Machine learning-based approach to developing potent EGFR inhibitors for breast cancer: design, synthesis, and in vitro evaluation. ACS Omega, 2023, 8: 31784- 31800.
|
33 |
Vamathevan J , Clark D , Czodrowski P , Dunham I , Ferran E , Lee G , Li B , Madabhushi A , Shah P , Spitzer M , Zhao S . Applications of machine learning in drug discovery and development. Nat Rev Drug Discov, 2019, 18: 463- 477.
|
34 |
Winchester LM , Harshfield EL , Shi L , Badhwar A , Khleifat AA , Clarke N , Dehsarvi A , Lengyel I , Lourida I , Madan CR , Marzi SJ , Proitsi P , Rajkumar AP , Rittman T , Silajdžić E , Tamburin S , Ranson JM , Llewellyn DJ . Artificial intelligence for biomarker discovery in Alzheimer's disease and dementia. Alzheimers Dement, 2023, 19: 5860- 5871.
|
35 |
Wang S , Summers RM . Machine learning and radiology. Med Image Anal, 2012, 16: 933- 951.
|
36 |
Ben-Israel D , Jacobs WB , Casha S , Lang S , Ryu WHA , de Lotbiniere-Bassett M , Cadotte DW . The impact of machine learning on patient care: a systematic review. Artif Intell Med, 2020, 103: 101785.
|
37 |
Chandrabhatla AS , Pomeraniec IJ , Horgan TM , Wat EK , Ksendzovsky A . Landscape and future directions of machine learning applications in closed-loop brain stimulation. NPJ Digit Med, 2023, 6: 79.
|
38 |
Shoaran M . Next-generation closed-loop neural interfaces: circuit and AI-driven innovations. IEEE Solid-State Circuits Magazine, 2023, 15: 41- 49.
|
39 |
Belkacem AN , Jamil N , Khalid S , Alnajjar F . On closed-loop brain stimulation systems for improving the quality of life of patients with neurological disorders. Front Hum Neurosci, 2023, 17: 1085173.
|
40 |
Bailey NW , Hoy KE , Rogasch NC , Thomson RH , McQueen S , Elliot D , Sullivan CM , Fulcher BD , Daskalakis ZJ , Fitzgerald PB . Differentiating responders and non-responders to rTMS treatment for depression after one week using resting EEG connectivity measures. J Affect Disord, 2019, 242: 68- 79.
|
41 |
Cole EJ , Phillips AL , Bentzley BS , Stimpson KH , Nejad R , Barmak F , Veerapal C , Khan N , Cherian K , Felber E , Brown R , Choi E , King S , Pankow H , Bishop JH , Azeez A , Coetzee J , Rapier R , Odenwald N , Carreon D , Hawkins J , Chang M , Keller J , Raj K , DeBattista C , Jo B , Espil FM , Schatzberg AF , Sudheimer KD , Williams NR . Stanford neuromodulation therapy (SNT): a double-blind randomized controlled trial. Am J Psychiatry, 2022, 179: 132- 141.
|
42 |
Sadeghi-Goughari M , Rajabzadeh H , Han JW , Kwon HJ . Artificial intelligence-assisted ultrasound-guided focused ultrasound therapy: a feasibility study. Int J Hyperthermia, 2023, 40: 2260127.
|
43 |
Zohuri B , McDaniel PJ . Transcranial magnetic and electrical brain stimulation for neurological disorders. San Diego: Academic Press, 2022: 335- 342.
|
44 |
Swann NC , de Hemptinne C , Thompson MC , Miocinovic S , Miller AM , Gilron R , Ostrem JL , Chizeck HJ , Starr PA . Adaptive deep brain stimulation for Parkinson's disease using motor cortex sensing. J Neural Eng, 2018, 15: 046006.
|
45 |
Carè M , Chiappalone M , Cota VR . Personalized strategies of neurostimulation: from static biomarkers to dynamic closed-loop assessment of neural function. Front Neurosci, 2024, 18: 1363128.
|
46 |
Shimamoto T , Sano Y , Yoshimitsu K , Masamune K , Muragaki Y . Precise brain-shift prediction by new combination of W-Net deep learning for neurosurgical navigation. Neurol Med Chir (Tokyo), 2023, 63: 295- 303.
|
47 |
Park TY , Koh H , Lee W , Park SH , Chang WS , Kim H . Real-time acoustic simulation framework for tFUS: a feasibility study using navigation system. Neuroimage, 2023, 282: 120411.
|
48 |
Chen L , Zhao ZY . A promotional application of neuronavigation: mixed reality neuronavigation. Lin Chuang Shen Jing Wai Ke Za Zhi, 2022, 19: 121- 123.
|
|
陈凌, 赵振宇. 混合现实导航技术将成为神经外科手术导航的新方向. 临床神经外科杂志, 2022, 19: 121- 123.
|
49 |
Dogan I , Eray HA , Ozgural O , Tekneci O , Hasimoglu S , Terzi M , Mete EB , Kuzukiran YC , Elmas H , Orhan O , Abbasoglu B , Bayatli E , Zaimoglu M , Caglar S . Navigating the calvaria with mobile mixed reality-based neurosurgical planning: how feasible are smartphone applications as a craniotomy guide?. Neurosurg Focus, 2024, 56: E4.
|
50 |
Thabit A , Benmahdjoub M , van Veelen MC , Niessen WJ , Wolvius EB , van Walsum T . Augmented reality navigation for minimally invasive craniosynostosis surgery: a phantom study. Int J Comput Assist Radiol Surg, 2022, 17: 1453- 1460.
|
51 |
Edström E , Burström G , Omar A , Nachabe R , Söderman M , Persson O , Gerdhem P , Elmi-Terander A . Augmented reality surgical navigation in spine surgery to minimize staff radiation exposure. Spine (Phila Pa 1976), 2020, 45: E45- E53.
|
52 |
Elmi-Terander A , Burström G , Nachabe R , Skulason H , Pedersen K , Fagerlund M , Ståhl F , Charalampidis A , Söderman M , Holmin S , Babic D , Jenniskens I , Edström E , Gerdhem P . Pedicle screw placement using augmented reality surgical navigation with intraoperative 3D imaging: a first in-human prospective cohort study. Spine (Phila Pa 1976), 2019, 44: 517- 525.
|
53 |
Perin A , Gambatesa E , Rui CB , Carone G , Fanizzi C , Lombardo FM , Galbiati TF , Sgubin D , Silberberg H , Cappabianca P , Meling TR , DI Meco F , STARS Simulation Group . The "STARS" study: advanced preoperative rehearsal and intraoperative navigation in neurosurgical oncology. J Neurosurg Sci, 2023, 67: 671- 678.
|
54 |
Medenica V, Ivanovic L, Milosevic N. Applicability of artificial intelligence in neuropsychological rehabilitation of patients with brain injury[J]. Appl Neuropsychol Adult, 2024. [Epub ahead of print]
|
55 |
Ezra Tsur E , Elkana O . Intelligent robotics in pediatric cooperative neurorehabilitation: a review. Robotics, 2024, 13: 49.
|
56 |
Khalid UB , Naeem M , Stasolla F , Syed MH , Abbas M , Coronato A . Impact of AI-powered solutions in rehabilitation process: recent improvements and future trends. Int J Gen Med, 2024, 17: 943- 969.
|
57 |
Duncan PW , Sullivan KJ , Behrman AL , Azen SP , Wu SS , Nadeau SE , Dobkin BH , Rose DK , Tilson JK , Cen S , Hayden SK , LEAPS Investigative Team . Body-weight-supported treadmill rehabilitation after stroke. N Engl J Med, 2011, 26, 364: 2026- 2036.
|
58 |
Campagnini S , Arienti C , Patrini M , Liuzzi P , Mannini A , Carrozza MC . Machine learning methods for functional recovery prediction and prognosis in post-stroke rehabilitation: a systematic review. J Neuroeng Rehabil, 2022, 19: 54.
|
59 |
Harari Y , O'Brien MK , Lieber RL , Jayaraman A . Inpatient stroke rehabilitation: prediction of clinical outcomes using a machine-learning approach. J Neuroeng Rehabil, 2020, 17: 71.
|
60 |
Jiang J , Yan Z , Sheng C , Wang M , Guan Q , Yu Z , Han Y , Jiang J . A novel detection tool for mild cognitive impairment patients based on eye movement and electroencephalogram. J Alzheimers Dis, 2019, 72: 389- 399.
|
61 |
Liu F , Wang P , Hu J , Shen S , Wang H , Shi C , Peng Y , Zhou A . A psychologically interpretable artificial intelligence framework for the screening of loneliness, depression, and anxiety. Appl Psychol Health Well Being, 2025, 17: e12639.
|
62 |
Voigtlaender S , Pawelczyk J , Geiger M , Vaios EJ , Karschnia P , Cudkowicz M , Dietrich J , Haraldsen IRJH , Feigin V , Owolabi M , White TL , Świeboda P , Farahany N , Natarajan V , Winter SF . Artificial intelligence in neurology: opportunities, challenges, and policy implications. J Neurol, 2024, 271: 2258- 2273.
|
63 |
Krause-Jüttler G , Weitz J , Bork U . Interdisciplinary collaborations in digital health research: mixed methods case study. JMIR Hum Factors, 2022, 9: e36579.
|