1 |
Dixon L, Lim A, Grech-Sollars M, Nandi D, Camp S. Intraoperative ultrasound in brain tumor surgery: a review and implementation guide. Neurosurg Rev, 2022, 45: 2503- 2515.
doi: 10.1007/s10143-022-01778-4
|
2 |
Policicchio D, Doda A, Sgaramella E, Ticca S, Veneziani Santonio F, Boccaletti R. Ultrasound-guided brain surgery: echographic visibility of different pathologies and surgical applications in neurosurgical routine. Acta Neurochir (Wien), 2018, 160: 1175- 1185.
doi: 10.1007/s00701-018-3532-x
|
3 |
Šteňo A, Buvala J, Toma D, Jezberová M, Šteňo J. Navigated 3D-ultrasound power Doppler and visualization of lenticulostriate arteries during resections of insular gliomas. Brain Spine, 2022, 2: 100873.
doi: 10.1016/j.bas.2022.100873
|
4 |
García Pérez F, Vargas López AJ, Gomar Alba M, Velasco Albendea FJ, Guil Ibáñez JJ, Urreta Juárez G, Castelló Ruiz MJ, Narro Donate JM, Masegosa González J. Transcortical transcatheter ultrasound-assisted technique for deep-seated brain tumors: technical note. J Ultrasound, 2024, 27: 191- 197.
doi: 10.1007/s40477-023-00845-w
|
5 |
Mosallami Aghili SM, Maroufi SF, Sabahi M, Esmaeilzadeh M, Dabecco R, Adada B, Borghei-Razavi H. Intraoperative ultrasonography in pituitary surgery revisited: an institutional experience and systematic review on applications and considerations. World Neurosurg, 2023, 176: 149- 158.
doi: 10.1016/j.wneu.2023.04.126
|
6 |
Finger G, Wu KC, Godil SS, Carrau RL, Hardesty D, Prevedello DM. Ultrasound-guided endoscopic endonasal resection of sellar and suprasellar craniopharyngiomas. Front Surg, 2023, 10: 1073736.
doi: 10.3389/fsurg.2023.1073736
|
7 |
Baker KE, Robbins AC, Kumm ZT, Ziemke MK, Washington CW, Luzardo GD, Taylor CS, Stringer SP, Zachariah MA. Case report: side-firing intraoperative ultrasound guided endoscopic endonasal resection of a clival chordoma. Front Oncol, 2023, 13: 1039159.
doi: 10.3389/fonc.2023.1039159
|
8 |
Juncker RB, Finger G, Damante MA, Prevedello LM, Prevedello DM, Wu KC. Real -time intraoperative ultrasound imaging of the posterior pituitary gland during endoscopic endonasal approach. Acta Neurochir (Wien), 2024, 166: 456.
doi: 10.1007/s00701-024-06353-y
|
9 |
Aibar-Duran JA, Salgado-López L, Anka-Tugbiyele MO, Mirapeix RM, Gallardo Alcañiz A, Patino Alvarado JD, Rico Pereira M, Rodríguez Rodríguez R, Munoz-Hernandez F, de Quintana-Schmidt C. Navigated intraoperative ultrasound in neuro-oncology: volumetric accuracy and correlation with high-field MRI. J Neurosurg, 2024, 141: 79- 88.
doi: 10.3171/2023.10.JNS231244
|
10 |
Wu H, Cheng Y, Gao W, Chen P, Wei Y, Zhao H, Wang F. Progress in the application of ultrasound in glioma surgery. Front Med (Lausanne), 2024, 11: 1388728.
|
11 |
Mair R, Heald J, Poeata I, Ivanov M. A practical grading system of ultrasonographic visibility for intracerebral lesions. Acta Neurochir (Wien), 2013, 155: 2293- 2298.
doi: 10.1007/s00701-013-1868-9
|
12 |
Shinoura N, Takahashi M, Yamada R. Delineation of brain tumor margins using intraoperative sononavigation: implications for tumor resection. J Clin Ultrasound, 2006, 34: 177- 183.
doi: 10.1002/jcu.20219
|
13 |
Solheim O, Selbekk T, Jakola AS, Unsgård G. Ultrasound-guided operations in unselected high-grade gliomas: overall results, impact of image quality and patient selection. Acta Neurochir (Wien), 2010, 152: 1873- 1886.
doi: 10.1007/s00701-010-0731-5
|
14 |
Baker KE, Robbins AC, Wasson RG, McCandless MG, Lirette ST, Kimball RJ, Washington CW, Luzardo GD, Stringer SP, Zachariah MA. Side-firing intraoperative ultrasound applied to resection of pituitary macroadenomas and giant adenomas: a single-center retrospective case-control study. Front Oncol, 2022, 12: 1043697.
doi: 10.3389/fonc.2022.1043697
|
15 |
Di Cristofori A, Carone G, Rocca A, Rui CB, Trezza A, Carrabba G, Giussani C. Fluorescence and intraoperative ultrasound as surgical adjuncts for brain metastases resection: what do we know? A systematic review of the literature. Cancers (Basel), 2023, 15: 2047.
doi: 10.3390/cancers15072047
|
16 |
Xiao J, Zhao T, Cheng X, Sheng Q, Li C, Li Y, Zhang Y, Wang X, Cheng H, Ye L. Transcranial resection of falcine meningiomas by complete endoscopy with the assistance of intraoperative ultrasound. Neurosurg Rev, 2025, 48: 21.
doi: 10.1007/s10143-025-03186-w
|
17 |
Anichini G, Shah I, Mahoney DE, Patel N, Pakzad-Shahabi L, Da Costa OF, Syed N, Perryman R, Waldman A, O'Neill K. 3D ultrasound-augmented image guidance for surgery of high-grade gliomas: a quantitative analysis focused on the extent of resection. Surg Neurol Int, 2024, 15: 324.
doi: 10.25259/SNI_369_2024
|
18 |
Guo X, Xing H, Pan H, Wang Y, Chen W, Wang H, Zhang X, Liu J, Xu N, Wang Y, Ma W. Neuronavigation combined with intraoperative ultrasound and intraoperative magnetic resonance imaging versus neuronavigation alone in diffuse glioma surgery. World Neurosurg, 2024, 192: e355- e365.
doi: 10.1016/j.wneu.2024.09.105
|
19 |
Palavani LB, Ferreira MY, Borges PGLB, Bandeira L, da Silva Semione G, Almeida MV, Verly G, Polverini AD, Andreão FF, Camerotte R, Ferreira CC, Paiva W, Bertani R, Boockvar J. Ultrasound-guided resection of high-grade gliomas: a single-arm meta-analysis. World Neurosurg, 2024, 186: 17- 26.
doi: 10.1016/j.wneu.2024.03.033
|
20 |
Pichardo-Rojas PS, Zarate C, Arguelles-Hernández J, Barrón-Lomelí A, Sanchez-Velez R, Hjeala-Varas A, Gutierrez-Herrera E, Tandon N, Esquenazi Y. Intraoperative ultrasound for surgical resection of high-grade glioma and glioblastoma: a meta- analysis of 732 patients. Neurosurg Rev, 2024, 47: 120.
doi: 10.1007/s10143-024-02354-8
|
21 |
Wang M, Yu J, Zhang J, Pan Z, Chen J. Intraoperative ultrasound in recurrent gliomas surgery: impact on residual tumor volume and patient outcomes. Front Oncol, 2023, 13: 1161496.
doi: 10.3389/fonc.2023.1161496
|
22 |
Klein Gunnewiek K, van Baarsen KM, Graus EHM, Brink WM, Lequin MH, Hoving EW. Navigated intraoperative ultrasound in pediatric brain tumors. Childs Nerv Syst, 2024, 40: 2697- 2705.
doi: 10.1007/s00381-024-06492-8
|
23 |
Dietvorst S, Narayan A, Agbor C, Hennigan D, Gorodezki D, Bianchi F, Mallucci C, Frassanito P, Padayachy L, Schuhmann MU. Role of intraoperative ultrasound and MRI to aid grade of resection of pediatric low-grade gliomas: accumulated experience from 4 centers. Childs Nerv Syst, 2024, 40: 3165- 3172.
doi: 10.1007/s00381-024-06532-3
|
24 |
Moiyadi A, Shetty P, Singh VK, Yeole U. Intraoperative navigated three-dimensional ultrasound guidance improves resection in gliomas compared with standard two-dimensional ultrasound-results from a comparative cohort study. World Neurosurg, 2023, 180: e233- e242.
doi: 10.1016/j.wneu.2023.09.041
|
25 |
West TR, Mazurek MH, Perez NA, Razak SS, Gal ZT, McHugh JM, Choi BD, Nahed BV. Navigated intraoperative ultrasound offers effective and efficient real-time analysis of intracranial tumor resection and brain shift. Oper Neurosurg (Hagerstown), 2025, 28: 148- 158.
doi: 10.1227/ons.0000000000001250
|
26 |
Šteňo A, Karlík M, Mendel P, Čík M, Šteňo J. Navigated three-dimensional intraoperative ultrasound-guided awake resection of low-grade glioma partially infiltrating optic radiation. Acta Neurochir (Wien), 2012, 154: 1255- 1262.
doi: 10.1007/s00701-012-1357-6
|
27 |
Šteňo A, Buvala J, Šteňo J. Large residual pilocytic astrocytoma after failed ultrasound-guided resection: intraoperative ultrasound limitations require special attention. World Neurosurg, 2021, 150: 140- 143.
doi: 10.1016/j.wneu.2021.03.138
|
28 |
Toma D, Buvala J, Šteňo A. Hyperechoic area under insular gliomas: a potentially hazardous intraoperative ultrasound artifact. World Neurosurg, 2024, 182: e899- e904.
doi: 10.1016/j.wneu.2023.12.086
|
29 |
Skambath I, Kren J, Kuppler P, Buschschlueter S, Bonsanto MM. An attempt to identify brain tumour tissue in neurosurgery by mechanical indentation measurements. Acta Neurochir (Wien), 2024, 166: 343.
doi: 10.1007/s00701-024-06218-4
|
30 |
Albakr A, Ben-Israel D, Yang R, Kruger A, Alhothali W, Al Towim A, Lama S, Ajlan A, Riva-Cambrin J, Prada F, Al-Habib A, Sutherland GR. Ultrasound elastography in neurosurgery: current applications and future perspectives. World Neurosurg, 2023, 170: 195- 205.
doi: 10.1016/j.wneu.2022.10.108
|
31 |
Hersh AM, Weber-Levine C, Jiang K, Young L, Kerensky M, Routkevitch D, Tsehay Y, Perdomo-Pantoja A, Judy BF, Lubelski D, Theodore N, Manbachi A. Applications of elastography in operative neurosurgery: a systematic review. J Clin Neurosci, 2022, 104: 18- 28.
doi: 10.1016/j.jocn.2022.07.019
|
32 |
Gennari AG, Doniselli FM, Coley J, Grisoli M, Quaia E, Souchon R, Prada F, DiMeco F. Intraoperative comparison between strain elastography and preoperative magnetic resonance imaging features in high-grade gliomas using fusion imaging: a pilot study. World Neurosurg, 2024, 192: e83- e89.
doi: 10.1016/j.wneu.2024.09.024
|
33 |
Prada F, Del Bene M, Rampini A, Mattei L, Casali C, Vetrano IG, Gennari AG, Sdao S, Saini M, Sconfienza LM, DiMeco F. Intraoperative strain elastosonography in brain tumor surgery. Oper Neurosurg (Hagerstown), 2019, 17: 227- 236.
doi: 10.1093/ons/opy323
|
34 |
Cepeda S, Barrena C, Arrese I, Fernandez-Pérez G, Sarabia R. Intraoperative ultrasonographic elastography: a semi-quantitative analysis of brain tumor elasticity patterns and peritumoral region. World Neurosurg, 2020, 135: e258- e270.
doi: 10.1016/j.wneu.2019.11.133
|
35 |
Kumarapuram S, Yu R, Manchiraju P, Attard C, Escamilla J, Navin A, Khuroo M, Elmogazy O, Gupta G, Sun H, Roychowdhury S. Applying shear wave and magnetic resonance elastography to grade brain tumors: systematic review and meta- analysis. World Neurosurg, 2023, 178: e147- e155.
doi: 10.1016/j.wneu.2023.07.014
|
36 |
Taljanovic MS, Gimber LH, Becker GW, Latt LD, Klauser AS, Melville DM, Gao L, Witte RS. Shear-wave elastography: basic physics and musculoskeletal applications. Radiographics, 2017, 37: 855- 870.
doi: 10.1148/rg.2017160116
|
37 |
Chan HW, Uff C, Chakraborty A, Dorward N, Bamber JC. Clinical application of shear wave elastography for assisting brain tumor resection. Front Oncol, 2021, 11: 619286.
doi: 10.3389/fonc.2021.619286
|
38 |
Chauvet D, Imbault M, Capelle L, Demene C, Mossad M, Karachi C, Boch AL, Gennisson JL, Tanter M. In vivo measurement of brain tumor elasticity using intraoperative shear wave elastography. Ultraschall Med, 2016, 37: 584- 590.
|
39 |
Selbekk T, Brekken R, Indergaard M, Solheim O, Unsgård G. Comparison of contrast in brightness mode and strain ultrasonography of glial brain tumours. BMC Med Imaging, 2012, 12: 11.
doi: 10.1186/1471-2342-12-11
|
40 |
Sidhu PS, Cantisani V, Dietrich CF, Gilja OH, Saftoiu A, Bartels E, Bertolotto M, Calliada F, Clevert DA, Cosgrove D, Deganello A, D'Onofrio M, Drudi FM, Freeman S, Harvey C, Jenssen C, Jung EM, Klauser AS, Lassau N, Meloni MF, Leen E, Nicolau C, Nolsoe C, Piscaglia F, Prada F, Prosch H, Radzina M, Savelli L, Weskott HP, Wijkstra H. The EFSUMB guidelines and recommendations for the clinical practice of contrast-enhanced ultrasound (CEUS) in non-hepatic applications: update 2017(long version). Ultraschall Med, 2018, 39: e2- e44.
doi: 10.1055/a-0586-1107
|
41 |
Arlt F, Chalopin C, Müns A, Meixensberger J, Lindner D. Intraoperative 3D contrast-enhanced ultrasound (CEUS): a prospective study of 50 patients with brain tumours. Acta Neurochir (Wien), 2016, 158: 685- 694.
doi: 10.1007/s00701-016-2738-z
|
42 |
Prada F, Mattei L, Del Bene M, Aiani L, Saini M, Casali C, Filippini A, Legnani FG, Perin A, Saladino A, Vetrano IG, Solbiati L, Martegani A, DiMeco F. Intraoperative cerebral glioma characterization with contrast enhanced ultrasound. Biomed Res Int, 2014, ID484261.
|
43 |
Prada F, Vitale V, Del Bene M, Boffano C, Sconfienza LM, Pinzi V, Mauri G, Solbiati L, Sakas G, Kolev V, D'Incerti L, DiMeco F. Contrast-enhanced MR imaging versus contrast-enhanced US: a comparison in glioblastoma surgery by using intraoperative fusion imaging. Radiology, 2017, 285: 242- 249.
doi: 10.1148/radiol.2017161206
|
44 |
Tao AY, Chen X, Zhang LY, Chen Y, Cao D, Guo ZQ, Chen J. Application of intraoperative contrast-enhanced ultrasound in the resection of brain tumors. Curr Med Sci, 2022, 42: 169- 176.
doi: 10.1007/s11596-022-2538-z
|
45 |
Prada F, Perin A, Martegani A, Aiani L, Solbiati L, Lamperti M, Casali C, Legnani F, Mattei L, Saladino A, Saini M, DiMeco F. Intraoperative contrast-enhanced ultrasound for brain tumor surgery. Neurosurgery, 2014, 74: 542- 552.
doi: 10.1227/NEU.0000000000000301
|
46 |
Cheng LG, He W, Zhang HX, Song Q, Ning B, Li HZ, He Y, Lin S. Intraoperative contrast enhanced ultrasound evaluates the grade of glioma. Biomed Res Int, 2016, ID2643862.
|
47 |
Mattei L, Prada F, Marchetti M, Gaviani P, DiMeco F. Differentiating brain radionecrosis from tumour recurrence: a role for contrast-enhanced ultrasound[J]? Acta Neurochir (Wien), 2017, 159: 2405-2408.
|
48 |
Prada F, Vetrano IG, Gennari AG, Mauri G, Martegani A, Solbiati L, Sconfienza LM, Quaia E, Kearns KN, Kalani MYS, Park MS, DiMeco F, Dietrich C. How to perform intra- operative contrast-enhanced ultrasound of the brain: a WFUMB position paper. Ultrasound Med Biol, 2021, 47: 2006- 2016.
doi: 10.1016/j.ultrasmedbio.2021.04.016
|
49 |
Della Pepa GM, Sabatino G, la Rocca G. "Enhancing vision" in high grade glioma surgery: a feasible integrated 5- ALA + CEUS protocol to improve radicality. World Neurosurg, 2019, 129: 401- 403.
doi: 10.1016/j.wneu.2019.06.127
|
50 |
Prada F, Bene MD, Fornaro R, Vetrano IG, Martegani A, Aiani L, Sconfienza LM, Mauri G, Solbiati L, Pollo B, DiMeco F. Identification of residual tumor with intraoperative contrast-enhanced ultrasound during glioblastoma resection. Neurosurg Focus, 2016, 40: E7.
|
51 |
Fang Q, Hou Q, Liu X, Ma L, Jiang G, He Z. Enhancing the extent of resection in glioma surgery through the integration of intraoperative contrast-enhanced ultrasound and fluorescein sodium. World Neurosurg, 2024, 186: e662- e672.
doi: 10.1016/j.wneu.2024.04.027
|
52 |
Hu X, Zhang G, Xie R, Wang Y, Zhu Y, Ding H. Contrast-enhanced ultrasound can differentiate the level of glioma infiltration and correlate it with biological behavior: a study based on local pathology[J]. J Ultrasound, 2024. [Epub ahead of print]
|
53 |
Xie Y, Zhao C, Zhang X, Shen C, Qi Z, Tang Q, Guo W, Shi Z, Ding H, Yang B, Yu J. Intraoperative real-time IDH diagnosis for glioma based on automatic analysis of contrast-enhanced ultrasound video. Ultrasound Med Biol, 2025, 51: 484- 493.
doi: 10.1016/j.ultrasmedbio.2024.11.007
|
54 |
Zhang X, Shi Z, Xie Y, Wang Y, Shen C, Qi Z, Zhang L, Yang B, Yu J, Ding H. Quantitative analysis using intraoperative contrast-enhanced ultrasound in adult-type diffuse gliomas with isocitrate dehydrogenase mutations: association between hemodynamics and molecular features. Ultrasonography, 2023, 42: 561- 571.
doi: 10.14366/usg.23031
|
55 |
Šteňo A, Jezberová M, Hollý V, Timárová G, Šteňo J. Visualization of lenticulostriate arteries during insular low -grade glioma surgeries by navigated 3D ultrasound power Doppler: technical note. J Neurosurg, 2016, 125: 1016- 1023.
doi: 10.3171/2015.10.JNS151907
|
56 |
Della Pappa GM, Marchese E, Pedicelli A, Olivi A, Ricciardi L, Rapisarda A, Skrap B, Sabatino G, La Rocca G. Contrast-enhanced ultrasonography and color Doppler: guided intraoperative embolization of intracranial highly vascularized tumors. World Neurosurg, 2019, 128: 547- 555.
doi: 10.1016/j.wneu.2019.05.142
|
57 |
Alafandi A, Tbalvandany SS, Arzanforoosh F, van Der Voort SR, Incekara F, Verhoef L, Warnert EAH, Kruizinga P, Smits M. Probing the glioma microvasculature: a case series of the comparison between perfusion MRI and intraoperative high-frame-rate ultrafast Doppler ultrasound. Eur Radiol Exp, 2024, 8: 13.
doi: 10.1186/s41747-023-00406-0
|
58 |
Imbault M, Chauvet D, Gennisson JL, Capelle L, Tanter M. Intraoperative functional ultrasound imaging of human brain activity. Sci Rep, 2017, 7: 7304.
doi: 10.1038/s41598-017-06474-8
|
59 |
Weld A, Dixon L, Anichini G, Patel N, Nimer A, Dyck M, O'Neill K, Lim A, Giannarou S, Camp S. Challenges with segmenting intraoperative ultrasound for brain tumours. Acta Neurochir (Wien), 2024, 166: 317.
doi: 10.1007/s00701-024-06179-8
|
60 |
Juvekar P, Dorent R, Kögl F, Torio E, Barr C, Rigolo L, Galvin C, Jowkar N, Kazi A, Haouchine N, Cheema H, Navab N, Pieper S, Wells WM, Bi WL, Golby A, Frisken S, Kapur T. ReMIND: the brain resection multimodal imaging database. Sci Data, 2024, 11: 494.
doi: 10.1038/s41597-024-03295-z
|
61 |
Xiao Y, Fortin M, Unsgård G, Rivaz H, Reinertsen I. REtroSpective Evaluation of Cerebral Tumors (RESECT): a clinical database of pre-operative MRI and intra-operative ultrasound in low-grade glioma surgeries. Med Phys, 2017, 44: 3875- 3882.
doi: 10.1002/mp.12268
|
62 |
Behboodi B, Carton FX, Chabanas M, de Ribaupierre S, Solheim O, Munkvold BKR, Rivaz H, Xiao Y, Reinertsen I. Open access segmentations of intraoperative brain tumor ultrasound images. Med Phys, 2024, 51: 6525- 6532.
doi: 10.1002/mp.17317
|
63 |
Rahmani M, Moghaddasi H, Pour-Rashidi A, Ahmadian A, Najafzadeh E, Farnia P. D2BGAN: dual discriminator bayesian generative adversarial network for deformable MR-ultrasound registration applied to brain shift compensation. Diagnostics (Basel), 2024, 14: 1319.
doi: 10.3390/diagnostics14131319
|
64 |
Cepeda S, Esteban-Sinovas O, Singh V, Shetty P, Moiyadi A, Dixon L, Weld A, Anichini G, Giannarou S, Camp S, Zemmoura I, Giammalva GR, Del Bene M, Barbotti A, DiMeco F, West TR, Nahed BV, Romero R, Arrese I, Hornero R, Sarabia R. Deep learning-based glioma segmentation of 2D intraoperative ultrasound images: a multicenter study using the Brain Tumor Intraoperative Ultrasound Database (BraTioUS). Cancers (Basel), 2025, 17: 315.
doi: 10.3390/cancers17020315
|
65 |
Cepeda S, Esteban-Sinovas O, Singh V, Moiyadi A, Zemmoura I, Del Bene M, Barbotti A, DiMeco F, West TR, Nahed BV, Giammalva GR, Arrese I, Sarabia R. Prognostic modeling of overall survival in glioblastoma using radiomic features derived from intraoperative ultrasound: a multi-institutional study. Cancers (Basel), 2025, 17: 280.
doi: 10.3390/cancers17020280
|
66 |
Xie X, Shen C, Zhang X, Wu G, Yang B, Qi Z, Tang Q, Wang Y, Ding H, Shi Z, Yu J. Rapid intraoperative multi-molecular diagnosis of glioma with ultrasound radio frequency signals and deep learning. EBioMedicine, 2023, 98: 104899.
doi: 10.1016/j.ebiom.2023.104899
|
67 |
Unsgård G, Sagberg LM, Müller S, Selbekk T. A new acoustic coupling fluid with ability to reduce ultrasound imaging artefacts in brain tumour surgery: a phase Ⅰ study. Acta Neurochir (Wien), 2019, 161: 1475- 1486.
doi: 10.1007/s00701-019-03945-x
|
68 |
Bø HK, Solheim O, Kvistad KA, Berntsen EM, Torp SH, Skjulsvik AJ, Reinertsen I, Iversen DH, Unsgård G, Jakola AS. Intraoperative 3D ultrasound-guided resection of diffuse low-grade gliomas: radiological and clinical results. J Neurosurg, 2019, 132: 518- 529.
|
69 |
Fountain DM, Bryant A, Barone DG, Waqar M, Hart MG, Bulbeck H, Kernohan A, Watts C, Jenkinson MD. Intraoperative imaging technology to maximise extent of resection for glioma: a network meta-analysis. Cochrane Database Syst Rev, 2021, 1: CD013630.
|
70 |
Plaha P, Camp S, Cook J, McCulloch P, Voets N, Ma R, Taphoorn MJB, Dirven L, Grech-Sollars M, Watts C, Bulbeck H, Jenkinson MD, Williams M, Lim A, Dixon L, Price SJ, Ashkan K, Apostolopoulos V, Barber VS, Taylor A; FUTURE-GB Collaborators; Nandi D. FUTURE-GB: functional and ultrasound-guided resection of glioblastoma. A two-stage randomised control trial[J]. BMJ Open, 2022, 12: e064823.
|
71 |
Yeole U, Singh V, Mishra A, Shaikh S, Shetty P, Moiyadi A. Navigated intraoperative ultrasonography for brain tumors: a pictorial essay on the technique, its utility, and its benefits in neuro-oncology. Ultrasonography, 2020, 39: 394- 406.
doi: 10.14366/usg.20044
|
72 |
Weld A, Dixon L, Anichini G, Faoro G, Menciassi A, Camp S, Giannarou S. A method for mimicking tumour tissue in brain ex-vivo ultrasound for research application and clinical training. Acta Neurochir (Wien), 2025, 167: 13.
doi: 10.1007/s00701-024-06420-4
|
73 |
Brugada-Bellsolà F, Rodríguez PT, González-Crespo A, Menéndez-Girón S, Panisello CH, Garcia-Armengol R, Alonso CJD. Intraoperative ultrasound and magnetic resonance comparative analysis in brain tumor surgery: a valuable tool to flatten ultrasound's learning curve. Acta Neurochir (Wien), 2024, 166: 337.
doi: 10.1007/s00701-024-06228-2
|