| 1 |
National Guideline Centre (UK). Chronic heart failure in adults: diagnosis and management. London: National Institute for Health and Care Excellence (NICE), 2018: 1- 35.
|
| 2 |
Rossi A, Mikail N, Bengs S, Haider A, Treyer V, Buechel RR, Wegener S, Rauen K, Tawakol A, Bairey Merz CN, Regitz-Zagrosek V, Gebhard C. Heart-brain interactions in cardiac and brain diseases: why sex matters. Eur Heart J, 2022, 43: 3971- 3980.
doi: 10.1093/eurheartj/ehac061
|
| 3 |
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J, 2021, 42: 3599- 3726.
doi: 10.1093/eurheartj/ehab368
|
| 4 |
Elkholey K, Niewiadomska M, Morris L, Whyte S, Houser J, Humphrey MB, Stavrakis S. Transcutaneous vagus nerve stimulation ameliorates the phenotype of heart failure with preserved ejection fraction through its anti-inflammatory effects. Circ Heart Fail, 2022, 15: e009288.
|
| 5 |
Chen WW, Xiong XQ, Chen Q, Li YH, Kang YM, Zhu GQ. Cardiac sympathetic afferent reflex and its implications for sympathetic activation in chronic heart failure and hypertension. Acta Physiol (Oxf), 2015, 213: 778- 794.
doi: 10.1111/apha.12447
|
| 6 |
Xu Y, Fei X, Fu H, Chen A, Zhu X, Zhang F, Han Y. Upregulated expression of a TOR2A gene product: salusin-β in the paraventricular nucleus enhances sympathetic activity and cardiac sympathetic afferent reflex in rats with chronic heart failure induced by coronary artery ligation. Acta Physiol (Oxf), 2023, 238: e13987.
doi: 10.1111/apha.13987
|
| 7 |
Gold MR, Van Veldhuisen DJ, Hauptman PJ, Borggrefe M, Kubo SH, Lieberman RA, Milasinovic G, Berman BJ, Djordjevic S, Neelagaru S, Schwartz PJ, Starling RC, Mann DL. Vagus nerve stimulation for the treatment of heart failure: the INOVATE-HF trial. J Am Coll Cardiol, 2016, 68: 149- 158.
doi: 10.1016/j.jacc.2016.03.525
|
| 8 |
Brändle M, Wang W, Zucker IH. Ventricular mechanoreflex and chemoreflex alterations in chronic heart failure. Circ Res, 1994, 74: 262- 270.
doi: 10.1161/01.RES.74.2.262
|
| 9 |
Grassi G, Mancia G, Esler M. Central and peripheral sympathetic activation in heart failure. Cardiovasc Res, 2022, 118: 1857- 1871.
doi: 10.1093/cvr/cvab222
|
| 10 |
Patel KP, Katsurada K, Zheng H. Cardiorenal syndrome: the role of neural connections between the heart and the kidneys. Circ Res, 2022, 130: 1601- 1617.
doi: 10.1161/CIRCRESAHA.122.319989
|
| 11 |
Gelosa P, Castiglioni L, Rzemieniec J, Muluhie M, Camera M, Sironi L. Cerebral derailment after myocardial infarct: mechanisms and effects of the signaling from the ischemic heart to brain. J Mol Med (Berl), 2022, 100: 23- 41.
doi: 10.1007/s00109-021-02154-3
|
| 12 |
Biegus J, Niewinski P, Josiak K, Kulej K, Ponikowska B, Nowak K, Zymlinski R, Ponikowski P. Pathophysiology of advanced heart failure: what knowledge is needed for clinical management?. Heart Fail Clin, 2021, 17: 519- 531.
doi: 10.1016/j.hfc.2021.06.001
|
| 13 |
Rajendran PS, Hadaya J, Khalsa SS, Yu C, Chang R, Shivkumar K. The vagus nerve in cardiovascular physiology and pathophysiology: from evolutionary insights to clinical medicine. Semin Cell Dev Biol, 2024, 156: 190- 200.
doi: 10.1016/j.semcdb.2023.01.001
|
| 14 |
Mollace R, Scarano F, Bava I, Carresi C, Maiuolo J, Tavernese A, Gliozzi M, Musolino V, Muscoli S, Palma E, Muscoli C, Salvemini D, Federici M, Macrì R, Mollace V. Modulation of the nitric oxide/cGMP pathway in cardiac contraction and relaxation: potential role in heart failure treatment. Pharmacol Res, 2023, 196: 106931.
doi: 10.1016/j.phrs.2023.106931
|
| 15 |
Iovino M, Lisco G, Giagulli VA, Vanacore A, Pesce A, Guastamacchia E, De Pergola G, Triggiani V. Angiotensin Ⅱ-vasopressin interactions in the regulation of cardiovascular functions: evidence for an impaired hormonal sympathetic reflex in hypertension and congestive heart failure. Endocr Metab Immune Disord Drug Targets, 2021, 21: 1830- 1844.
doi: 10.2174/1871530321666210319120308
|
| 16 |
Goldberger JJ, Arora R, Buckley U, Shivkumar K. Autonomic nervous system dysfunction: JACC focus seminar. J Am Coll Cardiol, 2019, 73: 1189- 1206.
|
| 17 |
Giannoni A, Gentile F, Buoncristiani F, Borrelli C, Sciarrone P, Spiesshoefer J, Bramanti F, Iudice G, Javaheri S, Emdin M, Passino C. Chemoreflex and baroreflex sensitivity hold a strong prognostic value in chronic heart failure. JACC Heart Fail, 2022, 10: 662- 676.
doi: 10.1016/j.jchf.2022.02.006
|
| 18 |
Claassen JAHR, Thijssen DHJ, Panerai RB, Faraci FM. Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiol Rev, 2021, 101: 1487- 1559.
doi: 10.1152/physrev.00022.2020
|
| 19 |
Willie CK, Smith KJ. Fuelling the exercising brain: a regulatory quagmire for lactate metabolism. J Physiol, 2011, 589(Pt 4): 779- 780.
|
| 20 |
Weijs RWJ, Shkredova DA, Brekelmans ACM, Thijssen DHJ, Claassen JAHR. Longitudinal changes in cerebral blood flow and their relation with cognitive decline in patients with dementia: current knowledge and future directions. Alzheimers Dement, 2023, 19: 532- 548.
doi: 10.1002/alz.12666
|
| 21 |
Chen CF, Peng SL. Editorial for "Longitudinal changes in global cerebral blood flow in cognitively normal older adults: a phase-contrast MRI study". J Magn Reson Imaging, 2022, 56: 1546- 1547.
doi: 10.1002/jmri.28138
|
| 22 |
Cardiogenic dementia[J]. Lancet, 1977, 1: 27-28.
|
| 23 |
Komori T, Hoshide S, Turana Y, Sogunuru GP, Kario K, HOPE Asia Network. Cognitive impairment in heart failure patients: association with abnormal circadian blood pressure rhythm: a review from the HOPE Asia Network. Hypertens Res, 2024, 47: 261- 270.
doi: 10.1038/s41440-023-01423-7
|
| 24 |
Kim MS, Kim JJ. Heart and brain interconnection: clinical implications of changes in brain function during heart failure. Circ J, 2015, 79: 942- 947.
doi: 10.1253/circj.CJ-15-0360
|
| 25 |
Kresge HA, Khan OA, Wagener MA, Liu D, Terry JG, Nair S, Cambronero FE, Gifford KA, Osborn KE, Hohman TJ, Pechman KR, Bell SP, Wang TJ, Carr JJ, Jefferson AL. Subclinical compromise in cardiac strain relates to lower cognitive performances in older adults. J Am Heart Assoc, 2018, 7: e007562.
doi: 10.1161/JAHA.117.007562
|
| 26 |
Li T, Bao X, Li L, Qin R, Li C, Wang X. Heart failure and cognitive impairment: a narrative review of neuroimaging mechanism from the perspective of brain MRI. Front Neurosci, 2023, 17: 1148400.
doi: 10.3389/fnins.2023.1148400
|
| 27 |
Sharp FR, DeCarli CS, Jin LW, Zhan X. White matter injury, cholesterol dysmetabolism, and APP/Abeta dysmetabolism interact to produce Alzheimer's disease (AD) neuropathology: a hypothesis and review. Front Aging Neurosci, 2023, 15: 1096206.
doi: 10.3389/fnagi.2023.1096206
|
| 28 |
Sposato LA, Hilz MJ, Aspberg S, Murthy SB, Bahit MC, Hsieh CY, Sheppard MN, Scheitz JF, World Stroke Organisation Brain & Heart Task Force. Post-stroke cardiovascular complications and neurogenic cardiac injury: JACC state-of-the-art review. J Am Coll Cardiol, 2020, 76: 2768- 2785.
doi: 10.1016/j.jacc.2020.10.009
|
| 29 |
Alosco ML, Brickman AM, Spitznagel MB, Garcia SL, Narkhede A, Griffith EY, Raz N, Cohen R, Sweet LH, Colbert LH, Josephson R, Hughes J, Rosneck J, Gunstad J. Cerebral perfusion is associated with white matter hyperintensities in older adults with heart failure. Congest Heart Fail, 2013, 19: E29- E34.
doi: 10.1111/chf.12003
|
| 30 |
Rosano GMC, Moura B, Metra M, Böhm M, Bauersachs J, Ben Gal T, Adamopoulos S, Abdelhamid M, Bistola V, Čelutkienė J, Chioncel O, Farmakis D, Ferrari R, Filippatos G, Hill L, Jankowska EA, Jaarsma T, Jhund P, Lainscak M, Lopatin Y, Lund LH, Milicic D, Mullens W, Pinto F, Ponikowski P, Savarese G, Thum T, Volterrani M, Anker SD, Seferovic PM, Coats AJS. Patient profiling in heart failure for tailoring medical therapy: a consensus document of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail, 2021, 23: 872- 881.
doi: 10.1002/ejhf.2206
|
| 31 |
SOLVD Investigators, Yusuf S, Pitt B, Davis CE, Hood WB, Cohn JN. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med, 1991, 325: 293- 302.
doi: 10.1056/NEJM199108013250501
|
| 32 |
McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K, Zile MR, PARADIGM-HF Investigators and Committees. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med, 2014, 371: 993- 1004.
doi: 10.1056/NEJMoa1409077
|
| 33 |
McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS, Anand IS, Bělohlávek J, Böhm M, Chiang CE, Chopra VK, de Boer RA, Desai AS, Diez M, Drozdz J, Dukát A, Ge J, Howlett JG, Katova T, Kitakaze M, Ljungman CEA, Merkely B, Nicolau JC, O'Meara E, Petrie MC, Vinh PN, Schou M, Tereshchenko S, Verma S, Held C, DeMets DL, Docherty KF, Jhund PS, Bengtsson O, Sjöstrand M, Langkilde AM, DAPA-HF Trial Committees and Investigators. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med, 2019, 381: 1995- 2008.
doi: 10.1056/NEJMoa1911303
|
| 34 |
Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, Januzzi J, Verma S, Tsutsui H, Brueckmann M, Jamal W, Kimura K, Schnee J, Zeller C, Cotton D, Bocchi E, Böhm M, Choi DJ, Chopra V, Chuquiure E, Giannetti N, Janssens S, Zhang J, Gonzalez Juanatey JR, Kaul S, Brunner-La Rocca HP, Merkely B, Nicholls SJ, Perrone S, Pina I, Ponikowski P, Sattar N, Senni M, Seronde MF, Spinar J, Squire I, Taddei S, Wanner C, Zannad F, EMPEROR-Reduced Trial Investigators. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med, 2020, 383: 1413- 1424.
doi: 10.1056/NEJMoa2022190
|
| 35 |
Fumagalli S, Pieragnoli P, Ricciardi G, Mascia G, Mascia F, Michelotti F, Mascioli G, Beltrami M, Padeletti M, Nesti M, Marchionni N, Padeletti L. Cardiac resynchronization therapy improves functional status and cognition. Int J Cardiol, 2016, 219: 212- 217.
doi: 10.1016/j.ijcard.2016.06.001
|
| 36 |
Duncker D, Friedel K, König T, Schreyer H, Lüsebrink U, Duncker M, Oswald H, Klein G, Gardiwal A. Cardiac resynchronization therapy improves psycho-cognitive performance in patients with heart failure. Europace, 2015, 17: 1415- 1421.
doi: 10.1093/europace/euv005
|
| 37 |
Hanna P, Shivkumar K, Ardell JL. Calming the nervous heart: autonomic therapies in heart failure. Card Fail Rev, 2018, 4: 92- 98.
doi: 10.15420/cfr.2018.20.2
|
| 38 |
Sabbah HN, Ilsar I, Zaretsky A, Rastogi S, Wang M, Gupta RC. Vagus nerve stimulation in experimental heart failure. Heart Fail Rev, 2011, 16: 171- 178.
doi: 10.1007/s10741-010-9209-z
|
| 39 |
Wu Z, Liao J, Liu Q, Zhou S, Chen M. Chronic vagus nerve stimulation in patients with heart failure: challenge or failed translation?. Front Cardiovasc Med, 2023, 10: 1052471.
doi: 10.3389/fcvm.2023.1052471
|
| 40 |
Jankowska EA, Ponikowski P, Piepoli MF, Banasiak W, Anker SD, Poole-Wilson PA. Autonomic imbalance and immune activation in chronic heart failure: pathophysiological links. Cardiovasc Res, 2006, 70: 434- 445.
doi: 10.1016/j.cardiores.2006.01.013
|
| 41 |
Anand IS, Konstam MA, Klein HU, Mann DL, Ardell JL, Gregory DD, Massaro JM, Libbus I, DiCarlo LA, Udelson JJE, Butler J, Parker JD, Teerlink JR. Comparison of symptomatic and functional responses to vagus nerve stimulation in ANTHEM-HF, INOVATE-HF, and NECTAR-HF. ESC Heart Fail, 2020, 7: 75- 83.
|
| 42 |
Bazoukis G, Stavrakis S, Armoundas AA. Vagus nerve stimulation and inflammation in cardiovascular disease: a state-of-the-art review. J Am Heart Assoc, 2023, 12: e030539.
doi: 10.1161/JAHA.123.030539
|
| 43 |
Hauptman PJ, Mann DL. The vagus nerve and autonomic imbalance in heart failure: past, present, and future. Heart Fail Rev, 2011, 16: 97- 99.
doi: 10.1007/s10741-010-9222-2
|