[1] Soto-Piña AE, Pulido-Alvarado CC, Dulski J, Wszolek ZK, Magaña JJ. Specific biomarkers in spinocerebellar ataxia type 3: a systematic review of their potential uses in disease staging and treatment assessment[J]. Int J Mol Sci, 2024, 25:8074. [2] Lima M, Raposo M, Ferreira A, Melo ARV, Pavão S, Medeiros F, Teves L, Gonzalez C, Lemos J, Pires P, Lopes P, Valverde D, Gonzalez J, Kay T, Vasconcelos J. The homogeneous azorean Machado-Joseph disease cohort: characterization and contributions to advances in research[J]. Biomedicines, 2023, 11:247. [3] Costa Mdo C, Paulson HL. Toward understanding Machado-Joseph disease[J]. Prog Neurobiol, 2012, 97:239-257. [4] Sakai T, Kawakami H. Machado-Joseph disease: a proposal of spastic paraplegic subtype[J]. Neurology, 1996, 46:846-847. [5] Jain M, Patil N, Abdi G, Abbasi Tarighat M, Mohammed A, Ahmad Mohd Zain MR, Goh KW. Mechanistic insights and potential therapeutic approaches in PolyQ diseases via autophagy[J]. Biomedicines, 2023, 11:162. [6] Paulino R, Nóbrega C. Autophagy in spinocerebellar ataxia type 3: from pathogenesis to therapeutics[J]. Int J Mol Sci, 2023, 24: 7405. [7] Zhang JG, Xie HT, Yang AC. Neuromodulation: clinical advances and future perspectives[J]. Zhongguo Xian Dai Shen Jing Ji Bing Za Zhi, 2025, 25:1-10.[张建国, 解虎涛, 杨岸超. 神经调控技术临床应用进展与展望[J]. 中国现代神经疾病杂志, 2025, 25:1-10.] [8] Liu X, Wang H. Neuromodulations in psychiatric disorders: emerging lines of definition[J]. Psychother Psychosom, 2025, 94:31-39. [9] Davidson B, Bhattacharya A, Sarica C, Darmani G, Raies N, Chen R, Lozano AM. Neuromodulation techniques: from non-invasive brain stimulation to deep brain stimulation [J]. Neurotherapeutics, 2024, 21:e00330. [10] Benussi A, Batsikadze G, França C, Cury RG, Maas RPPWM. The therapeutic potential of non-invasive and invasive cerebellar stimulation techniques in hereditary ataxias [J]. Cells, 2023, 12:1193. [11] Vucic S, Stanley Chen KH, Kiernan MC, Hallett M, Benninger DH, Di Lazzaro V, Rossini PM, Benussi A, Berardelli A, Currà A, Krieg SM, Lefaucheur JP, Long Lo Y, Macdonell RA, Massimini M, Rosanova M, Picht T, Stinear CM, Paulus W, Ugawa Y, Ziemann U, Chen R. Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders: updated report of an IFCN committee[J]. Clin Neurophysiol, 2023, 150:131-175. [12] Edwards MJ, Talelli P, Rothwell JC. Clinical applications of transcranial magnetic stimulation in patients with movement disorders[J]. Lancet Neurol, 2008, 7:827-840. [13] Klomjai W, Katz R, Lackmy-Vallée A. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS)[J]. Ann Phys Rehabil Med, 2015, 58:208-213. [14] Moreno-Roco J, Del Valle L, Jiménez D, Acosta I, Castillo JL, Dharmadasa T, Kiernan MC, Matamala JM. Diagnostic utility of transcranial magnetic stimulation for neurodegenerative disease: a critical review [J]. Dement Neuropsychol, 2024, 17: e20230048. [15] Gong C, Long Y, Peng XM, Hu H, Chen J, Xiao L, Zhong YB, Wang MY, Luo Y. Efficacy and safety of noninvasive brain stimulation for patients with cerebellar ataxia: a systematic review and meta-analysis of randomized controlled trials[J]. J Neurol, 2023, 270:4782-4799. [16] Yin L, Wang X, Chen L, Liu D, Li H, Liu Z, Huang Y, Chen J. Repetitive transcranial magnetic stimulation for cerebellar ataxia: a systematic review and meta -analysis[J]. Front Neurol, 2023, 14:1177746. [17] Chen XY, Lian YH, Liu XH, Sikandar A, Li MC, Xu HL, Hu JP, Chen QL, Gan SR. Effects of repetitive transcranial magnetic stimulation on cerebellar metabolism in patients with spinocerebellar ataxia type 3[J]. Front Aging Neurosci, 2022, 14:827993. [18] Hu Z, Tao X, Huang Z, Xie K, Zhu S, Weng X, Lin D, Zhang Y, Wang L. Efficacy of high-frequency repetitive transcranial magnetic stimulation in a family with spinocerebellar ataxia type 3: a case report[J]. Heliyon, 2023, 9:e16190. [19] Qiu MQ. Clinical efficacy and MRS analysis of repetitive transcranial magnetic stimulation in the treatment of SCA3[D]. Hangzhou: Hangzhou Normal University, 2022.[仇梦秋. 重复经颅磁刺激治疗脊髓小脑共济失调3型的临床疗效及其磁共振波谱分析研究[D]. 杭州: 杭州师范大学, 2022.] [20] Huang YH. Study on the changes in white matter microstructure of the cerebrum-cerebellar circuit and the therapeutic effect of repeated transcranial magnetic stimulation in spinocerebellar ataxia type 3[D]. Chongqing: Army Medical University, 2024. [黄永华. 脊髓小脑共济失调3 型大脑-小脑环路白质微结构改变与重复经颅磁刺激调控的疗效研究[D]. 重庆: 陆军军医大学, 2024.] [21] Wei FF, Zheng LJ, Wang J, Fan BQ, Sun DD, Peng Y, Cai HA. Efficacy of high-frequency repetitive transcranial magnetic stimulation on motor symptoms in patients with spinocerebellar ataxia 3(SCA3)[J]. An Mo Yu Kang Fu Yi Xue, 2018, 9:14-15. [魏飞飞, 郑丽君, 王静, 樊冰倩, 孙丹丹, 彭焱, 蔡华安. 高频重复经颅磁刺激对脊髓小脑性共济失调3型(SCA3)患者运动症状的疗效评估[J]. 按摩与康复医学, 2018, 9:14-15.] [22] Liu X, Zhang L, Xu HL, Liu XH, Sikandar A, Li MC, Xia XY, Huang ZQ, Chen NP, Tu YQ, Hu JP, Gan SR, Chen QL, Chen XY, Wang SZ; Members of the Organization in South-East China for Cerebellar Ataxia Research (OSCCAR). Effect of regional brain activity following repeat transcranial magnetic stimulation in SCA3: a secondary analysis of a randomized clinical trial[J]. Cerebellum, 2024, 23:1923-1931. [23] Shi Y, Zou G, Chen Z, Wan L, Peng L, Peng H, Shen L, Xia K, Qiu R, Tang B, Jiang H. Efficacy of cerebellar transcranial magnetic stimulation in spinocerebellar ataxia type 3: a randomized, single-blinded, controlled trial[J]. J Neurol, 2023, 270:5372-5379. [24] Wu H, Xu HL, Liu XH, Sikandar A, Lin W, Cui ML, Kang MX, Zheng YR, Gan SR, Qiu LL. Feasibility of repetitive transcranial magnetic stimulation on non-motor symptoms of spinocerebellar ataxia type 3: a secondary analysis of a randomized clinical trial[J]. Front Neurol, 2025, 16:1567292. [25] Zhou M, Qiu M, Jin Y, Li D, Tao C, Lou D, Hu Z, Wang Y, You Z, Shao Y, Zhu Y, Qu M, Lu X. Effectiveness of high-frequency repetitive transcranial magnetic stimulation in patients with spinocerebellar ataxia type 3[J]. J ECT, 2024, 40: 15-19. [26] Sikandar A, Liu XH, Xu HL, Li Y, Lin YQ, Chen XY, Li GH, Lin MT, Wang N, Chen WJ, Ni GX, Gan SR. Short-term efficacy of repetitive transcranial magnetic stimulation in SCA3: a prospective, randomized, double-blind, sham-controlled study [J]. Parkinsonism Relat Disord, 2023, 106:105236. [27] Qiu M, Wang R, Shen Y, Hu Z, Zhang Y. Efficacy and safety of repetitive transcranial magnetic stimulation in spinocerebellar ataxia type 3: a systematic review and Meta analysis of randomized controlled trials[J]. Cerebellum, 2024, 23:1604-1613. [28] Chen X, Liu X, Lin W, Zhang L, Cheng X, Huang Z, Zhang W, Zeng H, Lian Y, Zhang Y, Li M, Chen N, Huang S, Wang Z, Wang X, Liu Z, Yuan R, Chen X, Ye Z, Cheng B, Zhang Y, Chen Q, Wang D, Ni J, Wang N, Fu Y, Gan S; OSCCAR Investigators. Transcranial alternating current stimulation for treating spinocerebellar ataxia type 3: a randomized controlled trial[J]. Cell Rep Med, 2025, 6:102162. [29] Maas RPPWM, Schutter DJLG, Toni I, Timmann D, van de Warrenburg BPC. Cerebellar transcranial direct current stimulation modulates timing but not acquisition of conditioned eyeblink responses in SCA3 patients[J]. Brain Stimul, 2022, 15: 806-813. [30] Yang C, Jung B, Lee SH. Transcranial electrical stimulation: clinical implication and practice for treatment of psychiatric illness[J]. Clin Psychopharmacol Neurosci, 2024, 22:391-404. [31] Maas RPPWM, Toni I, Doorduin J, Klockgether T, Schutter DJLG, van de Warrenburg BPC. Cerebellar transcranial direct current stimulation in spinocerebellar ataxia type 3(SCA3-tDCS): rationale and protocol of a randomized, double-blind, sham-controlled study[J]. BMC Neurol, 2019, 19:149. [32] Maas RPPWM, Teerenstra S, Toni I, Klockgether T, Schutter DJLG, van de Warrenburg BPC. Cerebellar transcranial direct current stimulation in spinocerebellar ataxia type 3: a randomized, double-blind, sham-controlled trial [J]. Neurotherapeutics, 2022, 19:1259-1272. [33] Brito R, Fabrício JV, Araujo A, Barreto G, Baltar A, Monte-Silva K. Single-session cerebellar transcranial direct current stimulation improves postural stability and reduces ataxia symptoms in spinocerebellar ataxia[J]. Cerebellum, 2024, 23: 1993-2002. [34] Brito R, Fabrício JV, Araujo A, Sacchi M, Baltar A, Lima FA, Ribeiro AC, Sousa B, Santos C, Tanaka C, Monte-Silva K. Differential effects of cerebellar transcranial direct current stimulation with gait training on functional mobility, balance, and ataxia symptoms[J]. Cerebellum, 2024, 23:2457-2467. [35] Liu X, Lin W, Zhang L, Zhang WL, Cheng XP, Lian YH, Li MC, Wang SZ, Chen XY, Gan SR. Effects of cerebellar transcranial alternating current stimulation in cerebellar ataxia: study protocol for a randomised controlled trial[J]. Front Neurosci, 2023, 17:1180454. [36] Shoaib Z, Chang WK, Lee J, Lee SH, Phillips VZ, Lee SH, Paik NJ, Hwang HJ, Kim WS. Investigation of neuromodulatory effect of anodal cerebellar transcranial direct current stimulation on the primary motor cortex using functional near-infrared spectroscopy[J]. Cerebellum, 2024, 23:56-66. [37] Galea JM, Jayaram G, Ajagbe L, Celnik P. Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation[J]. J Neurosci, 2009, 29:9115-9122. [38] Benussi A, Cantoni V, Manes M, Libri I, Dell'Era V, Datta A, Thomas C, Ferrari C, Di Fonzo A, Fancellu R, Grassi M, Brusco A, Alberici A, Borroni B. Motor and cognitive outcomes of cerebello-spinal stimulation in neurodegenerative ataxia[J]. Brain, 2021, 144:2310-2321. [39] Pilloni G, Shaw M, Feinberg C, Clayton A, Palmeri M, Datta A, Charvet LE. Long term at-home treatment with transcranial direct current stimulation (tDCS) improves symptoms of cerebellar ataxia: a case report[J]. J Neuroeng Rehabil, 2019, 16:41. [40] Kang Q, Lang E, Sahin M. Entrainment of cerebellar nuclear cells via AC stimulation of the cerebellar cortex[J]. Int IEEE EMBS Conf Neural Eng, 2023:ID40071148. [41] Libri I, Cantoni V, Benussi A, Rivolta J, Ferrari C, Fancellu R, Synofzik M, Alberici A, Padovani A, Borroni B. Comparing cerebellar tDCS and cerebellar tACS in neurodegenerative ataxias using wearable sensors: a randomized, double-blind, sham-controlled, triple-crossover trial[J]. Cerebellum, 2024, 23: 570-578. [42] Bjekić J, Živanović M, Stanković M, Paunović D, Konstantinović U, Filipović SR. The subjective experience of transcranial electrical stimulation: a within-subject comparison of tolerability and side effects between tDCS, tACS, and otDCS [J]. Front Hum Neurosci, 2024, 18:1468538. [43] Wei YJ, Wang TY, Wang CF, Zhang Y, Xu GZ. Research progress on combined transcranial electromagnetic stimulation in clinical application in brain diseases[J]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, 2025, 42:847-856.[魏语佳, 王亭宇,王春方, 张颖, 徐桂芝. 经颅电磁联合刺激在脑疾病临床应用的研究进展[J]. 生物医学工程学杂志, 2025, 42:847-856.] [44] Lozano AM, Lipsman N. Probing and regulating dysfunctional circuits using deep brain stimulation[J]. Neuron, 2013, 77:406-424. [45] Herrington TM, Cheng JJ, Eskandar EN. Mechanisms of deep brain stimulation[J]. J Neurophysiol, 2016, 115:19-38. [46] Sandoval-Pistorius SS, Hacker ML, Waters AC, Wang J, Provenza NR, de Hemptinne C, Johnson KA, Morrison MA, Cernera S. Advances in deep brain stimulation: from mechanisms to applications[J]. J Neurosci, 2023, 43:7575-7586. [47] Kumar G, Ma CHE. Toward a cerebello-thalamo-cortical computational model of spinocerebellar ataxia[J]. Neural Netw, 2023, 162:541-556. [48] Stefanescu MR, Dohnalek M, Maderwald S, Thürling M, Minnerop M, Beck A, Schlamann M, Diedrichsen J, Ladd ME, Timmann D. Structural and functional MRI abnormalities of cerebellar cortex and nuclei in SCA3, SCA6 and Friedreich's ataxia[J]. Brain, 2015, 138(Pt 5):1182-1197. [49] Ferreira M, Schaprian T, Kügler D, Reuter M, Deike-Hoffmann K, Timmann D, Ernst TM, Giunti P, Garcia-Moreno H, van de Warrenburg B, van Gaalen J, de Vries J, Jacobi H, Steiner KM, Öz G, Joers JM, Onyike C, Povazan M, Reetz K, Romanzetti S, Klockgether T, Faber J. Cerebellar volumetry in ataxias: relation to ataxia severity and duration[J]. Cerebellum, 2024, 23:1521-1529. [50] Cury RG, França C, Silva V, Barbosa ER, Capato TTC, Lepski G, Duarte KP, Teixeira MJ, Ciampi de Andrade D. Effects of dentate nucleus stimulation in spinocerebellar ataxia type 3[J]. Parkinsonism Relat Disord, 2019, 69:91-93. [51] Cury RG, França C, Duarte KP, Paraguay I, Diniz JM, Cunha P, Galhardoni R, Silva V, Iglesio R, Bissoli AB, Lepski G, Barbosa ER, Teixeira MJ, de Andrade DC. Safety and outcomes of dentate nucleus deep brain stimulation for cerebellar ataxia [J]. Cerebellum, 2022, 21:861-865. [52] Kuo MC, Tai CH, Tseng SH, Wu RM. Long-term efficacy of bilateral subthalamic deep brain stimulation in the parkinsonism of SCA 3: a rare case report[J]. Eur J Neurol, 2022, 29:2544-2547. [53] Minnerop M, Pieperhoff P, Elben S, Hartmann CJ, Müttel T, Kahlen U, Wüllner U, Klockgether T, Wojtecki L, Caspers S, Amunts K, Vesper J, Schnitzler A, Groiss SJ. The volume of the subthalamic nucleus in spinocerebellar ataxia type 3: potential relevance for the clinical phenotype and treatment of parkinsonian symptoms with deep brain stimulation [J]. J Neurol, 2024, 272:16. [54] Aupy J, Chaumont H, Bestaven E, Guillaud E, Cuny E, Goizet C, Burbaud P, Guehl D. Globus pallidus internus stimulation in spino-cerebellar ataxia type 3[J]. J Neurol, 2018, 265: 1714-1716. [55] Ikezawa J, Yokochi F, Okiyama R, Isoo A, Agari T, Sunami Y, Terao T, Takahashi K. Deep brain stimulation for patients with dystonia in Machado-Joseph disease: three case reports[J]. J Neurol, 2023, 270:3261-3265. [56] Cui Z, Lan Y, Chang Y, Liu X, Wang J, Lou X, Wang R. Case report: short-term efficacy and changes in 18F-FDG-PET with acute multi-target stimulation in spinocerebellar ataxia type 3(SCA3/MJD)[J]. Front Neurol, 2023, 14:1246430. [57] Beisteiner R, Hallett M, Lozano AM. Ultrasound neuromodulation as a new brain therapy[J]. Adv Sci (Weinh), 2023, 10:e2205634. [58] Keihani A, Sanguineti C, Chaichian O, Huston CA, Moore C, Cheng C, Janssen SA, Donati FL, Mayeli A, Moussawi K, Phillips ML, Ferrarelli F. Transcranial focused ultrasound neuromodulation in psychiatry: main characteristics, current evidence, and future directions[J]. Brain Sci, 2024, 14:1095. [59] Jolesz FA, Hynynen K, McDannold N, Tempany C. MR imaging-controlled focused ultrasound ablation: a noninvasive image-guided surgery[J]. Magn Reson Imaging Clin N Am, 2005, 13: 545-560. [60] Kwak G, Grewal A, Slika H, Mess G, Li H, Kwatra M, Poulopoulos A, Woodworth GF, Eberhart CG, Ko HS, Manbachi A, Caplan J, Price RJ, Tyler B, Suk JS. Brain nucleic acid delivery and genome editing via focused ultrasound-mediated blood-brain barrier opening and long-circulating nanoparticles [J]. ACS Nano, 2024, 18:24139-24153. [61] Kubanek J. Neuromodulation with transcranial focused ultrasound[J]. Neurosurg Focus, 2018, 44:E14. [62] Ghanouni P, Pauly KB, Elias WJ, Henderson J, Sheehan J, Monteith S, Wintermark M. Transcranial MRI-guided focused ultrasound: a review of the technologic and neurologic applications[J]. AJR Am J Roentgenol, 2015, 205:150-159. [63] Lee K, Park TY, Lee W, Kim H. A review of functional neuromodulation in humans using low-intensity transcranial focused ultrasound[J]. Biomed Eng Lett, 2024, 14:407-438. [64] Baek H, Pahk KJ, Kim MJ, Youn I, Kim H. Modulation of cerebellar cortical plasticity using low-intensity focused ultrasound for poststroke sensorimotor function recovery[J]. Neurorehabil Neural Repair, 2018, 32:777-787. [65] Zhang T, Pan N, Wang Y, Liu C, Hu S. Transcranial focused ultrasound neuromodulation: a review of the excitatory and inhibitory effects on brain activity in human and animals[J]. Front Hum Neurosci, 2021, 15:749162. [66] Purrer V, Upadhyay N, Pieper CC, Klockgether T, Boecker H, Wüllner U, Borger V. Magnetic resonance imaging-guided focused ultrasound thalamotomy in spinocerebellar ataxia type 12[J]. Mov Disord, 2022, 37:872-873. [67] Jeong H, Song IU, Chung YA, Park JS, Na SH, Im JJ, Bikson M, Lee W, Yoo SS. Short-term efficacy of transcranial focused ultrasound to the hippocampus in Alzheimer's disease: a preliminary study[J]. J Pers Med, 2022, 12:250. [68] Cai Q, Meng L, Quan M, Wang L, Ren J, Zheng C, Yang J, Ming D. Progress of research in the application of ultrasound technology for the treatment of Alzheimer's disease[J]. Neural Regen Res, 2025, 20:2823-2837. [69] Qin W, He J, Zhou Y. Potential mechanism and efficacy evaluation of transcranial focused ultrasound therapy for Alzheimer's disease[J]. J Neurosci Methods, 2025, 418:110428. [70] Shi Y, Wu W. Recent advances in transcranial focused ultrasound stimulation for Parkinson's disease[J]. Hua Xi Yi Xue, 2025, 40:973-978.[史宇, 吴文. 经颅聚焦超声刺激在帕金森病治疗中的研究进展[J]. 华西医学, 2025, 40:973-978.] [71] Mahmoudi P, Veladi H, Pakdel FG. Optogenetics, tools and applications in neurobiology[J]. J Med Signals Sens, 2017, 7:71-79. [72] Zhang Q, Li T, Xu M, Islam B, Wang J. Application of optogenetics in neurodegenerative diseases [J]. Cell Mol Neurobiol, 2024, 44:57. [73] Shuvaev AN, Belozor OS, Mozhei O, Yakovleva DA, Potapenko IV, Shuvaev AN, Smolnikova MV, Salmin VV, Salmina AB, Hirai H, Teschemacher AG, Kasparov S. Chronic optogenetic stimulation of Bergman glia leads to dysfunction of EAAT1 and Purkinje cell death, mimicking the events caused by expression of pathogenic ataxin-1[J]. Neurobiol Dis, 2021, 154:105340. [74] Lee YF, Russ AN, Zhao Q, Perle SJ, Maci M, Miller MR, Hou SS, Algamal M, Zhao Z, Li H, Gelwan N, Liu Z, Gomperts SN, Araque A, Galea E, Bacskai BJ, Kastanenka KV. Optogenetic targeting of astrocytes restores slow brain rhythm function and slows Alzheimer's disease pathology[J]. Sci Rep, 2023, 13: 13075. [75] Yang Q, Song D, Xie Z, He G, Zhao J, Wang Z, Dong Z, Zhang H, Yang L, Jiang M, Wu Y, Shi Q, Li J, Yang J, Bai Z, Quan Z, Qing H. Optogenetic stimulation of CA3 pyramidal neurons restores synaptic deficits to improve spatial short-term memory in APP/PS1 mice[J]. Prog Neurobiol, 2022, 209:102209. [76] Gong X, Mendoza-Halliday D, Ting JT, Kaiser T, Sun X, Bastos AM, Wimmer RD, Guo B, Chen Q, Zhou Y, Pruner M, Wu CW, Park D, Deisseroth K, Barak B, Boyden ES, Miller EK, Halassa MM, Fu Z, Bi G, Desimone R, Feng G. An ultra-sensitive step-function opsin for minimally invasive optogenetic stimulation in mice and macaques[J]. Neuron, 2020, 107:38-51. [77] Wang JH, Chen HY, Chuang CC, Chen JC. Study of near-infrared light-induced excitation of upconversion nanoparticles as a vector for non-viral DNA delivery[J]. RSC Adv, 2020, 10: 41013-41021. |