[1] Casimo K, Weaver KE, Wander J, Ojemann JG. BCI use and its relation to adaptation in cortical networks[J]. IEEE Trans Neural Syst Rehabil Eng, 2017, 25:1697-1704. [2] Zhang H, Jiao L, Yang S, Li H, Jiang X, Feng J, Zou S, Xu Q, Gu J, Wang X, Wei B. Brain-computer interfaces: the innovative key to unlocking neurological conditions[J]. Int J Surg, 2024, 110:5745-5762. [3] Wang A, Tian X, Jiang D, Yang C, Xu Q, Zhang Y, Zhao S, Zhang X, Jing J, Wei N, Wu Y, Lv W, Yang B, Zang D, Wang Y, Zhang Y, Wang Y, Meng X. Rehabilitation with brain-computer interface and upper limb motor function in ischemic stroke: a randomized controlled trial[J]. Med, 2024, 5:559-569. [4] Biasiucci A, Leeb R, Iturrate I, Perdikis S, Al-Khodairy A, Corbet T, Schnider A, Schmidlin T, Zhang H, Bassolino M, Viceic D, Vuadens P, Guggisberg AG, Millán JDR. Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke[J]. Nat Commun, 2018, 9:2421. [5] Zou J, Chen H, Chen X, Lin Z, Yang Q, Tie C, Wang H, Niu L, Guo Y, Zheng H. Noninvasive closed-loop acoustic brain-computer interface for seizure control[J]. Theranostics, 2024, 14:5965-5981. [6] Project team for the "Study of key scientific issues, key core technologies and their layout for brain-computer interfaces". Brain-computer interface technology: current development status and future outlook[J]. Ke Xue Yu She Hui, 2024, 14:1-25.[《脑机接口关键科学问题、关键核心技术及其布局研究》项目组. 脑机接口技术发展现状及未来展望[J]. 科学与社会, 2024, 14:1-25.] [7] Fahimi Hnazaee M, Verwoert M, Freudenburg ZV, van der Salm SMA, Aarnoutse EJ, Leinders S, Van Hulle MM, Ramsey NF, Vansteensel MJ. Towards predicting ECoG-BCI performance: assessing the potential of scalp-EEG[J]. J Neural Eng, 2022, 19:046045. [8] Kimberley TJ, Cramer SC, Wolf SL, Liu C, Gochyyev P, Dawson J; VNS-REHAB Trial Group. Long-term outcomes of vagus nerve stimulation paired with upper extremity rehabilitation after stroke[J]. Stroke, 2025, 56:2255-2265. [9] Touma L, Dansereau B, Chan AY, Jetté N, Kwon CS, Braun KPJ, Friedman D, Jehi L, Rolston JD, Vadera S, Wong-Kisiel LC, Englot DJ, Keezer MR. Neurostimulation in people with drug-resistant epilepsy: systematic review and meta-analysis from the ILAE Surgical Therapies Commission[J]. Epilepsia, 2022, 63:1314-1329. [10] Bergey GK, Morrell MJ, Mizrahi EM, Goldman A, King-Stephens D, Nair D, Srinivasan S, Jobst B, Gross RE, Shields DC, Barkley G, Salanova V, Olejniczak P, Cole A, Cash SS, Noe K, Wharen R, Worrell G, Murro AM, Edwards J, Duchowny M, Spencer D, Smith M, Geller E, Gwinn R, Skidmore C, Eisenschenk S, Berg M, Heck C, Van Ness P, Fountain N, Rutecki P, Massey A, O'Donovan C, Labar D, Duckrow RB, Hirsch LJ, Courtney T, Sun FT, Seale CG. Long-term treatment with responsive brain stimulation in adults with refractory partial seizures[J]. Neurology, 2015, 84:810-817. [11] Samanta D, Jain P, Cunningham J, Arya R. Comparative efficacy of neuromodulation therapies in Lennox-Gastaut syndrome: a systematic review and meta-analysis of vagus nerve stimulation, deep brain stimulation, and responsive neurostimulation[J]. Epilepsia, 2025, 66:4324-4342. [12] Sharma A, Parfyonov M, Tiefenbach J, Hogue O, Nero N, Jehi L, Serletis D, Bingaman W, Gupta A, Rammo R. Predictors of therapeutic response following thalamic neuromodulation for drug-resistant pediatric epilepsy: a systematic review and individual patient data meta-analysis[J]. Epilepsia, 2024, 65: 542-555. [13] Brunner I, Lundquist CB, Pedersen AR, Spaich EG, Dosen S, Savic A. Brain computer interface training with motor imagery and functional electrical stimulation for patients with severe upper limb paresis after stroke: a randomized controlled pilot trial[J]. J Neuroeng Rehabil, 2024, 21:10. [14] Jiang YC, Yin JX, Zhao BY, Wang SQ, Ou PL, Li JW, Zhang YN, Lin Q. Application of motor imagery brain-computer interface on patients with motor dysfunction after stroke[J]. Kang Fu Xue Bao, 2023, 33:562-570.[蒋咏春, 尹浚骁, 赵碧仪, 王思晴, 区培琳, 李家雯, 张燕妮, 林强. 运动想象脑机接口技术在脑卒中后运动功能康复中的应用[J]. 康复学报, 2023, 33:562-570.] [15] Dawson J, Liu CY, Francisco GE, Cramer SC, Wolf SL, Dixit A, Alexander J, Ali R, Brown BL, Feng W, DeMark L, Hochberg LR, Kautz SA, Majid A, O'Dell MW, Pierce D, Prudente CN, Redgrave J, Turner DL, Engineer ND, Kimberley TJ. Vagus nerve stimulation paired with rehabilitation for upper limb motor function after ischaemic stroke (VNS-REHAB): a randomised, blinded, pivotal, device trial[J]. Lancet, 2021, 397: 1545-1553. [16] Ahmed I, Yeldan I, Mustafaoglu R. The adjunct of electric neurostimulation to rehabilitation approaches in upper limb stroke rehabilitation: a systematic review with network Meta-analysis of randomized controlled trials[J]. Neuromodulation, 2022, 25:1197-1214. [17] Wang Y, Tan Q, Pan M, Yu J, Wu S, Tu W, Li M, Jiang S. Minimally invasive vagus nerve stimulation modulates mast cell degranulation via the microbiota-gut-brain axis to ameliorate blood-brain barrier and intestinal barrier damage following ischemic stroke[J]. Int Immunopharmacol, 2024, 132:112030. [18] Wang Y, Yang Z, Wang J, Ge M, Wang N, Xu S. Brain-body interactions in ischemic stroke: VNS reprograms microglia and FNS enhances cerebellar neuroprotection[J]. Stroke, 2025, 56: e267-e278. [19] Krauss JK, Lipsman N, Aziz T, Boutet A, Brown P, Chang JW, Davidson B, Grill WM, Hariz MI, Horn A, Schulder M, Mammis A, Tass PA, Volkmann J, Lozano AM. Technology of deep brain stimulation: current status and future directions[J]. Nat Rev Neurol, 2021, 17:75-87. [20] Cagnan H, Mallet N, Moll CKE, Gulberti A, Holt AB, Westphal M, Gerloff C, Engel AK, Hamel W, Magill PJ, Brown P, Sharott A. Temporal evolution of beta bursts in the parkinsonian cortical and basal ganglia network[J]. Proc Natl Acad Sci USA, 2019, 116:16095-16104. [21] Lozano AM, Lipsman N, Bergman H, Brown P, Chabardes S, Chang JW, Matthews K, McIntyre CC, Schlaepfer TE, Schulder M, Temel Y, Volkmann J, Krauss JK. Deep brain stimulation: current challenges and future directions[J]. Nat Rev Neurol, 2019, 15:148-160. [22] Hariz M, Blomstedt P. Deep brain stimulation for Parkinson's disease[J]. J Intern Med, 2022, 292:764-778. [23] Peltola J, Colon AJ, Pimentel J, Coenen VA, Gil-Nagel A, Gonçalves Ferreira A, Lehtimäki K, Ryvlin P, Taylor RS, Ackermans L, Ardesch J, Bentes C, Bosak M, Burneo JG, Chamadoira C, Elger CE, Erőss L, Fabo D, Faulkner H, Gawlowicz J, Gharabaghi A, Iacoangeli M, Janszky J, Järvenpää S, Kaufmann E, Kho KH, Kumlien E, Laufs H, Lettieri C, Linhares P, Noachtar S, Parrent A, Pataraia E, Patel NK, Peralta AR, Rácz A, Campos AR, Rego R, Ricciuti RA, Rona S, Rouhl RPW, Schulze-Bonhage A, Schuurman R, Sprengers M, Sufianov A, Temel Y, Theys T, Van Paesschen W, Van Roost D, Vaz R, Vonck K, Wagner L, Zwemmer J, Abouihi a A, Brionne TC, Gielen F, Boon PAJM; MORE Study Group. Deep Brain stimulation of the anterior nucleus of the thalamus in drug-resistant epilepsy in the MORE Multicenter Patient Registry[J]. Neurology, 2023, 100:e1852-e1865. [24] Martínez-Fernández R, Máñez-Miró JU, Rodríguez-Rojas R, Del Álamo M, Shah BB, Hernández-Fernández F, Pineda-Pardo JA, Monje MHG, Fernández -Rodríguez B, Sperling SA, Mata -Marín D, Guida P, Alonso-Frech F, Obeso I, Gasca-Salas C, Vela-Desojo L, Elias WJ, Obeso JA. Randomized trial of focused ultrasound subthalamotomy for Parkinson's disease[J]. N Engl J Med, 2020, 383:2501-2513. [25] Schuepbach WM, Rau J, Knudsen K, Volkmann J, Krack P, Timmermann L, Hälbig TD, Hesekamp H, Navarro SM, Meier N, Falk D, Mehdorn M, Paschen S, Maarouf M, Barbe MT, Fink GR, Kupsch A, Gruber D, Schneider GH, Seigneuret E, Kistner A, Chaynes P, Ory-Magne F, Brefel Courbon C, Vesper J, Schnitzler A, Wojtecki L, Houeto JL, Bataille B, Maltête D, Damier P, Raoul S, Sixel-Doering F, Hellwig D, Gharabaghi A, Krüger R, Pinsker MO, Amtage F, Régis JM, Witjas T, Thobois S, Mertens P, Kloss M, Hartmann A, Oertel WH, Post B, Speelman H, Agid Y, Schade-Brittinger C, Deuschl G; EARLYSTIM Study Group. Neurostimulation for Parkinson's disease with early motor complications[J]. N Engl J Med, 2013, 368:610-622. [26] Schuepbach WMM, Tonder L, Schnitzler A, Krack P, Rau J, Hartmann A, Hälbig TD, Pineau F, Falk A, Paschen L, Paschen S, Volkmann J, Dafsari HS, Barbe MT, Fink GR, Kühn A, Kupsch A, Schneider GH, Seigneuret E, Fraix V, Kistner A, Chaynes PP, Ory-Magne F, Brefel-Courbon C, Vesper J, Wojtecki L, Derrey S, Maltête D, Damier P, Derkinderen P, Sixel-Döring F, Trenkwalder C, Gharabaghi A, Wächter T, Weiss D, Pinsker MO, Regis JM, Witjas T, Thobois S, Mertens P, Knudsen K, Schade-Brittinger C, Houeto JL, Agid Y, Vidailhet M, Timmermann L, Deuschl G; EARLYSTIM Study Group. Quality of life predicts outcome of deep brain stimulation in early Parkinson disease[J]. Neurology, 2019, 92: e1109-e1120. [27] Guidetti M, Marceglia S, Bocci T, Duncan R, Fasano A, Foote KD, Hamani C, Krauss JK, Kühn AA, Lena F, Limousin P, Lozano AM, Maiorana NV, Modugno N, Moro E, Okun MS, Oliveri S, Santilli M, Schnitzler A, Temel Y, Timmermann L, Visser-Vandewalle V, Volkmann J, Priori A. Is physical therapy recommended for people with Parkinson's disease treated with subthalamic deep brain stimulation: a delphi consensus study [J]. J Neuroeng Rehabil, 2025, 22:80. [28] Furlan JC, Sakakibara BM, Miller WC, Krassioukov AV. Global incidence and prevalence of traumatic spinal cord injury[J]. Can J Neurol Sci, 2013, 40:456-464. [29] Simeral JD, Hosman T, Saab J, Flesher SN, Vilela M, Franco B, Kelemen JN, Brandman DM, Ciancibello JG, Rezaii PG, Eskandar EN, Rosler DM, Shenoy KV, Henderson JM, Nurmikko AV, Hochberg LR. Home use of a percutaneous wireless intracortical brain-computer interface by individuals with tetraplegia[J]. IEEE Trans Biomed Eng, 2021, 68: 2313-2325. [30] He Y, Eguren D, Azorín JM, Grossman RG, Luu TP, Contreras-Vidal JL. Brain-machine interfaces for controlling lower-limb powered robotic systems[J]. J Neural Eng, 2018, 15:021004. [31] Cervera MA, Soekadar SR, Ushiba J, Millán JDR, Liu M, Birbaumer N, Garipelli G. Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis[J]. Ann Clin Transl Neurol, 2018, 5:651-663. [32] Bouton CE, Shaikhouni A, Annetta NV, Bockbrader MA, Friedenberg DA, Nielson DM, Sharma G, Sederberg PB, Glenn BC, Mysiw WJ, Morgan AG, Deogaonkar M, Rezai AR. Restoring cortical control of functional movement in a human with quadriplegia[J]. Nature, 2016, 533:247-250. [33] He WZ, Wang DY, Meng QF, He F, Xu MP, Ming D. Applications and prospects of electroencephalography technology in neurorehabilitation assessment and treatment[J]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, 2024, 41: 1271-1278.[贺威忠, 王登宇, 孟强帆, 何峰, 许敏鹏, 明东. 脑电图技术在神经康复评估与治疗中的应用和展望[J]. 生物医学工程学杂志, 2024, 41:1271-1278.] [34] Snider SB, Bodien YG, Bianciardi M, Brown EN, Wu O, Edlow BL. Disruption of the ascending arousal network in acute traumatic disorders of consciousness[J]. Neurology, 2019, 93: e1281-e1287. [35] Edlow BL, Claassen J, Schiff ND, Greer DM. Recovery from disorders of consciousness: mechanisms, prognosis and emerging therapies[J]. Nat Rev Neurol, 2021, 17:135-156. [36] Sun F, Zhou G. Willful modulation of brain activity in disorders of consciousness[J]. N Engl J Med, 2010, 362:1937. [37] Scangos KW, Khambhati AN, Daly PM, Makhoul GS, Sugrue LP, Zamanian H, Liu TX, Rao VR, Sellers KK, Dawes HE, Starr PA, Krystal AD, Chang EF. Closed-loop neuromodulation in an individual with treatment-resistant depression[J]. Nat Med, 2021, 27:1696-1700. [38] Beauchamp MS, Oswalt D, Sun P, Foster BL, Magnotti JF, Niketeghad S, Pouratian N, Bosking WH, Yoshor D. Dynamic stimulation of visual cortex produces form vision in sighted and blind humans[J]. Cell, 2020, 181:774-783. |