[1] Frauscher B, Rossetti AO, Beniczky S. Recent advances in clinical electroencephalography[J]. Curr Opin Neurol, 2024, 37:134-140. [2] Peltola ME, Leitinger M, Halford JJ, Vinayan KP, Kobayashi K, Pressler RM, Mindruta I, Mayor LC, Lauronen L, Beniczky S. Routine and sleep EEG:minimum recording standards of the International Federation of Clinical Neurophysiology and the International League Against Epilepsy[J]. Clin Neurophysiol, 2023, 147:108-120. [3] Mussigmann T, Bardel B, Lefaucheur JP. Resting-state electroencephalography (EEG) biomarkers of chronic neuropathic pain:a systematic review[J]. Neuroimage, 2022, 258:119351. [4] Alkhachroum A, Appavu B, Egawa S, Foreman B, Gaspard N, Gilmore EJ, Hirsch LJ, Kurtz P, Lambrecq V, Kromm J, Vespa P, Zafar SF, Rohaut B, Claassen J. Electroencephalogram in the intensive care unit:a focused look at acute brain injury[J].Intensive Care Med, 2022, 48:1443-1462. [5] Lemoine É, Neves Briard J, Rioux B, Gharbi O, Podbielski R, Nauche B, Toffa D, Keezer M, Lesage F, Nguyen DK, Bou Assi E. Computer-assisted analysis of routine EEG to identify hidden biomarkers of epilepsy:a systematic review[J]. Comput Struct Biotechnol J, 2023, 24:66-86. [6] Yan CG, Wang XD, Lu B, Deng ZY, Gao QL. DPABINet:a toolbox for brain network and graph theoretical analyses[J]. Sci Bull (Beijing), 2024, 69:1628-1631. [7] Venkatapathy S, Votinov M, Wagels L, Kim S, Lee M, Habel U, Ra IH, Jo HG. Ensemble graph neural network model for classification of major depressive disorder using whole-brain functional connectivity[J]. Front Psychiatry, 2023, 14:1125339. [8] Qi X, Xu W, Li G. Neuroimaging study of brain functional differences in generalized anxiety disorder and depressive disorder[J]. Brain Sci, 2023, 13:1282. [9] Sendi MSE, Zendehrouh E, Fu Z, Liu J, Du Y, Mormino E, Salat DH, Calhoun VD, Miller RL. Disrupted dynamic functional network connectivity among cognitive control networks in the progression of Alzheimer's disease[J]. Brain Connect, 2023, 13:334-343. [10] Echeverri I, Ardila K, Molina-Mateo J, Padilla Buriticá JI, Carceller H, Barcelo E, Llamur SI, de la Iglesia Vaya M. EEG-based functional connectivity analysis for cognitive impairment classification[J]. Electronics, 2023, 12:4432. [11] Zhou Y, Gong L, Yang Y, Tan L, Ruan L, Chen X, Luo H, Ruan J. Spatio-temporal dynamics of resting-state brain networks are associated with migraine disability[J]. J Headache Pain, 2023, 24:13. [12] Mohammadi H, Karwowski W. Graph neural networks in brain connectivity studies:methods, challenges, and future directions[J]. Brain Sci, 2024, 15:17. [13] Lenkala S, Marry R, Gopovaram SR, Akinci TC, Topsakal O. Comparison of automated machine learning (AutoML) tools for epileptic seizure detection using electroencephalograms (EEG)[J]. Computers, 2023, 12:197. [14] Pavel AM, O'Toole JM, Proietti J, Livingstone V, Mitra S, Marnane WP, Finder M, Dempsey EM, Murray DM, Boylan GB; ANSeR Consortium. Machine learning for the early prediction of infants with electrographic seizures in neonatal hypoxic-ischemic encephalopathy[J]. Epilepsia, 2023, 64:456-468. [15] Lopes FJA, Táboas PZ. Euler and the bridges of Königsberg[J].Revista Brasileira de História da Matemática, 2015, 15:23-32. [16] Chiarion G, Sparacino L, Antonacci Y, Faes L, Mesin L. Connectivity analysis in EEG data:a tutorial review of the state of the art and emerging trends[J]. Bioengineering (Basel), 2023, 10:372. [17] Euler L. Solutio problematis ad geometriam situs pertinentis[DB/OL]. Euler Archive-All Works, 1741 (2018-09-25)[2025-09-20].https://scholarlycommons.pacific.edu/euler-works/53. [18] Ma HL, Zeng TA, Jiang L, Zhang M, Li H, Su R, Wang ZX, Chen DM, Xu M, Xie WT, Dang P, Bu XO, Zhang T, Wang TZ. Altered resting-state network connectivity patterns for predicting attentional function in deaf individuals:an EEG study[J]. Hear Res, 2023, 429:108696. [19] Conti M, Bovenzi R, Garasto E, Schirinzi T, Placidi F, Mercuri NB, Cerroni R, Pierantozzi M, Stefani A. Brain functional connectivity in de novo Parkinson's disease patients based on clinical EEG[J]. Front Neurol, 2022, 13:844745. [20] Ye X, Hu P, Yang B, Yang Y, Gao D, Zeng GQ, Wang K. Using scalp EEG to predict seizure recurrence and electrical status epilepticus in children with idiopathic focal epilepsy[J]. Seizure, 2024, 118:8-16. [21] Ren Z, Zhao Y, Han X, Yue M, Wang B, Zhao Z, Wen B, Hong Y, Wang Q, Hong Y, Zhao T, Wang N, Zhao P. An objective model for diagnosing comorbid cognitive impairment in patients with epilepsy based on the clinical-EEG functional connectivity features[J]. Front Neurosci, 2023, 16:1060814. [22] Fan Q, Jiang L, El Gohary A, Dong F, Wu D, Jiang T, Wang C, Liu J. A multi-domain feature fusion epilepsy seizure detection method based on spike matching and PLV functional networks[J]. J Neural Eng, 2025, 22:016025. [23] Ricci L, Tombini M, Savastano E, Pulitano P, Piccioli M, Forti M, Sancetta B, Boscarino M, Narducci F, Mecarelli O, Ciccozzi M, Di Lazzaro V, Assenza G. Quantitative EEG analysis of brivaracetam in drug-resistant epilepsy:a pharmaco-EEG study[J]. Clin Neurophysiol, 2024, 163:152-159. [24] Vinck M, Oostenveld R, van Wingerden M, Battaglia F, Pennartz CM. An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias[J]. Neuroimage, 2011, 55:1548-1565. [25] Anastasiadou MN, Christodoulakis M, Papathanasiou ES, Papacostas SS, Hadjipapas A, Mitsis GD. Graph theoretical characteristics of EEG-based functional brain networks in patients with epilepsy:the effect of reference choice and volume conduction[J]. Front Neurosci, 2019, 13:221. [26] Nagy P, Tóth B, Winkler I, Boncz Á. The effects of spatial leakage correction on the reliability of EEG-based functional connectivity networks[J]. Hum Brain Mapp, 2024, 45:e26747. [27] Khaleghi N, Hashemi S, Peivandi M, Ardabili SZ, Behjati M, Sheykhivand S, Danishvar S. EEG-based functional connectivity analysis of brain abnormalities:a systematic review study[J].Inform Med Unlocked, 2024, 47:101476. [28] Lanzone J, Boscarino M, Tufo T, Di Lorenzo G, Ricci L, Colicchio G, Di Lazzaro V, Tombini M, Assenza G. Vagal nerve stimulation cycles alter EEG connectivity in drug-resistant epileptic patients:a study with graph theory metrics[J]. Clin Neurophysiol, 2022, 142:59-67. [29] Lucas A, Cornblath EJ, Sinha N, Hadar P, Caciagli L, Keller SS, Bonilha L, Shinohara RT, Stein JM, Das S, Gleichgerrcht E, Davis KA. Resting state functional connectivity demonstrates increased segregation in bilateral temporal lobe epilepsy[J].Epilepsia, 2023, 64:1305-1317. [30] Costa C, Vecchio F, Romoli M, Miraglia F, Nardi Cesarini E, Alù F, Calabresi P, Rossini PM. Cognitive decline risk stratification in people with late-onset epilepsy of unknown etiology:an electroencephalographic connectivity and graph theory pilot study[J]. J Alzheimers Dis, 2022, 88:893-901. [31] Lu M, Guo Z, Gao Z. Effect of intracranial electrical stimulation on dynamic functional connectivity in medically refractory epilepsy[J]. Front Hum Neurosci, 2023, 17:1295326. [32] Ke M, Hou Y, Zhang L, Liu G. Brain functional network changes in patients with juvenile myoclonic epilepsy:a study based on graph theory and Granger causality analysis[J]. Front Neurosci, 2024, 18:1363255. [33] Martinez-Lizana E, Brandt A, Dümpelmann M, Schulze-Bonhage A. Resting state connectivity biomarkers of seizure freedom after epilepsy surgery[J]. Neuroimage Clin, 2024, 44:103673. [34] Tsai ML, Wang CC, Lee FC, Peng SJ, Chang H, Tseng SH. Resting-state EEG functional connectivity in children with Rolandic spikes with or without clinical seizures[J].Biomedicines, 2022, 10:1553. [35] Adamovich T, Zakharov I, Tabueva A, Malykh S. The thresholding problem and variability in the EEG graph network parameters[J]. Sci Rep, 2022, 12:18659. [36] Bullmore E, Sporns O. The economy of brain network organization[J]. Nat Rev Neurosci, 2012, 13:336-349. [37] Achard S, Bullmore E. Efficiency and cost of economical brain functional networks[J]. PLoS Comput Biol, 2007, 3:e17. [38] Richie-Halford A, Yeatman JD, Simon N, Rokem A. Multidimensional analysis and detection of informative features in human brain white matter[J]. PLoS Comput Biol, 2021, 17:e1009136. [39] Zakharov I, Adamovich T, Tabueva A, Ismatullina V, Malykh S. The effect of density thresholding on the EEG network construction[J/OL]. J Phys Conf Ser, 2021, 1727:012009[2025-09-20]. https://www.researchgate.net/publication/348624981_The_effect_of_density_thresholding_on_the_EEG_network_construction. [40] Manickam T, Ramasamy V, Doraisamy N. Comparison of data-driven thresholding methods using directed functional brain networks[J]. Rev Neurosci, 2024, 36:119-138. [41] Su TY, Hung PL, Chen C, Lin YJ, Peng SJ. Graph theory-based electroencephalographic connectivity and its association with ketogenic diet effectiveness in epileptic children[J]. Nutrients, 2021, 13:2186. [42] Zhang H, Hao Y, He H, Roberts N. EEG based brain functional connectivity analysis for post-autoimmune encephalitis (AE) patients with epilepsy[J]. Epilepsy Res, 2023, 193:107166. [43] Siddiqui A, Abu Hasan R, Saad Azhar Ali S, Elamvazuthi I, Lu CK, Tang TB. Detection of low resilience using data-driven effective connectivity measures[J/OL]. IEEE Trans Neural Syst Rehabil Eng, 2024, 32, 3657-3668.[2025-09-20]. https://doi.org/10.1109/tnsre.2024.3465269. [44] Lagarde S, Roehri N, Lambert I, Trebuchon A, McGonigal A, Carron R, Scavarda D, Milh M, Pizzo F, Colombet B, Giusiano B, Medina Villalon S, Guye M, Bénar CG, Bartolomei F. Interictal stereotactic-EEG functional connectivity in refractory focal epilepsies[J]. Brain, 2018, 141:2966-2980. [45] Park KM, Lee BI, Shin KJ, Ha SY, Park J, Kim TH, Mun CW, Kim SE. Progressive topological disorganization of brain network in focal epilepsy[J]. Acta Neurol Scand, 2018, 137:425-431. [46] Dharan AL, Bowden SC, Lai A, Peterson ADH, Cheung MW, Woldman W, D'Souza WJ. Resting-state functional connectivity in the idiopathic generalized epilepsies:a systematic review and meta-analysis of EEG and MEG studies[J]. Epilepsy Behav, 2021, 124:108336. [47] Lee DA, Jang T, Kang J, Park S, Park KM. Functional connectivity alterations in patients with post-stroke epilepsy based on source-level EEG and graph theory[J]. Brain Topogr, 2024, 37:921-930. [48] Vecchio F, Miraglia F, Curcio G, Della Marca G, Vollono C, Mazzucchi E, Bramanti P, Rossini PM. Cortical connectivity in fronto-temporal focal epilepsy from EEG analysis:a study via graph theory[J]. Clin Neurophysiol, 2015, 126:1108-1116. [49] Ding Y, Guo K, Li J, Shan Q, Guo Y, Chen M, Wu Y, Wang X. Alterations in brain network functional connectivity and topological properties in DRE patients[J]. Front Neurol, 2023, 14:1238421. [50] Lam AD, Zepeda R, Cole AJ, Cash SS. Widespread changes in network activity allow non-invasive detection of mesial temporal lobe seizures[J]. Brain, 2016, 139(Pt 10):2679-2693. [51] Davis PE, Kapur K, Filip-Dhima R, Trowbridge SK, Little E, Wilson A, Leuchter A, Bebin EM, Krueger D, Northrup H, Wu JY, Sahin M, Peters JM; Tuberous Sclerosis Autism Centers of Excellence Research Network. Increased electroencephalography connectivity precedes epileptic spasm onset in infants with tuberous sclerosis complex[J]. Epilepsia, 2019, 60:1721-1732. [52] Sun Q, Liu Y, Li S. Weighted directed graph-based automatic seizure detection with effective brain connectivity for EEG signals[J]. Signal Image Video Process, 2024, 18:899-909. [53] Salvatici G, Pellegrino G, Perulli M, Danieli A, Bonanni P, Duma GM. Electroencephalography derived connectivity informing epilepsy surgical planning:towards clinical applications and future perspectives[J]. Neuroimage Clin, 2024, 44:103703. [54] Ntolkeras G, Makaram N, Bernabei M, De La Vega AC, Bolton J, Madsen JR, Stone SSD, Pearl PL, Papadelis C, Grant EP, Tamilia E. Interictal EEG source connectivity to localize the epileptogenic zone in patients with drug-resistant epilepsy:a machine learning approach[J]. Epilepsia, 2024, 65:944-960. [55] Coito A, Biethahn S, Tepperberg J, Carboni M, Roelcke U, Seeck M, van Mierlo P, Gschwind M, Vulliemoz S. Interictal epileptogenic zone localization in patients with focal epilepsy using electric source imaging and directed functional connectivity from low-density EEG[J]. Epilepsia Open, 2019, 4:281-292. [56] Hwang S, Shin Y, Sunwoo JS, Son H, Lee SB, Chu K, Jung KY, Lee SK, Kim YG, Park KI. Increased coherence predicts medical refractoriness in patients with temporal lobe epilepsy on monotherapy[J]. Sci Rep, 2024, 14:20530. [57] Mao L, Zheng G, Cai Y, Luo W, Zhang Y, Wu K, Ding J, Wang X. Machine learning-based algorithm of drug-resistant prediction in newly diagnosed patients with temporal lobe epilepsy[J]. Clin Neurophysiol, 2025, 171:154-163. [58] Pegg EJ, Taylor JR, Laiou P, Richardson M, Mohanraj R. Interictal electroencephalographic functional network topology in drug-resistant and well-controlled idiopathic generalized epilepsy[J]. Epilepsia, 2021, 62:492-503. [59] Zhou Z, Gong P, Jiao X, Niu Y, Xu Z, Qin J, Yang Z. Interictal paroxysmal fast activity and functional connectivity in steroid responsive and non-responsive Lennox-Gastaut syndrome[J].Eur J Paediatr Neurol, 2025, 55:38-46. [60] Liu L, Zheng R, Wu D, Yuan Y, Lin Y, Wang D, Jiang T, Cao J, Xu Y. Global and multi-partition local network analysis of scalp EEG in West syndrome before and after treatment[J].Neural Netw, 2024, 179:106540. [61] Gleichgerrcht E, Keller SS, Drane DL, Munsell BC, Davis KA, Kaestner E, Weber B, Krantz S, Vandergrift WA, Edwards JC, McDonald CR, Kuzniecky R, Bonilha L. Temporal lobe epilepsy surgical outcomes can be inferred based on structural connectome hubs:a machine learning study[J]. Ann Neurol, 2020, 88:970-983. [62] Lanzone J, Boscarino M, Tufo T, Di Lorenzo G, Ricci L, Colicchio G, Di Lazzaro V, Tombini M, Assenza G. Vagal nerve stimulation cycles alter EEG connectivity in drug-resistant epileptic patients:a study with graph theory metrics[J]. Clin Neurophysiol, 2022, 142:59-67. [63] Chen H, Wang Y, Ji T, Jiang Y, Zhou XH. Brain functional connectivity-based prediction of vagus nerve stimulation efficacy in pediatric pharmacoresistant epilepsy[J]. CNS Neurosci Ther, 2023, 29:3259-3268. [64] Hsieh TY, Hung PL, Su TY, Peng SJ. Graph Theory-Based Electroencephalographic Connectivity via phase-locking value and its association with ketogenic diet responsiveness in patients with focal onset seizures[J]. Nutrients, 2022, 14:4457. [65] Kanai S, Oguri M, Okanishi T, Miyamoto Y, Maeda M, Yazaki K, Matsuura R, Tozawa T, Sakuma S, Chiyonobu T, Hamano SI, Maegaki Y. Predictive modeling based on functional connectivity of interictal scalp EEG for infantile epileptic spasms syndrome[J]. Clin Neurophysiol, 2024, 167:37-48. [66] Germany Morrison E, Danthine V, Santalucia R, Torres A, Cakiroglu I, Nonclercq A, El Tahry R. Characterization of vagus nerve stimulation (VNS) dose-dependent effects on EEG power spectrum and synchronization[J]. Biomedicines, 2024, 12:557. [67] Jia M, Liu W, Duan J, Chen L, Chen CLP, Wang Q, Zhou Z.Efficient graph convolutional networks for seizure prediction using scalp EEG[J]. Front Neurosci, 2022, 16:967116. [68] Li Z, Hwang K, Li K, Wu J, Ji T. Graph-generative neural network for EEG-based epileptic seizure detection via discovery of dynamic brain functional connectivity[J]. Sci Rep, 2022, 12:18998. [69] Guo J, Feng T, Wei P, Huang J, Yang Y, Wang Y, Cao G, Huang Y, Kang G, Zhao G. Adaptive graph learning with SEEG data for improved seizure localization:considerations of generalization and simplicity[J]. Biomed Signal Process Control, 2025, 101:107148. [70] Salvatici G, Pellegrino G, Perulli M, Danieli A, Bonanni P, Duma GM. Electroencephalography derived connectivity informing epilepsy surgical planning:towards clinical applications and future perspectives[J]. Neuroimage Clin, 2024, 44:103703. |