[1] Lee HA, Hong SH, Kim JW, Jang IS. Possible involvement of DNA methylation in NKCC1 gene expression during postnatal development and in response to ischemia[J]. J Neurochem, 2010, 114:520-529.
[2] James BJ, Gales MA, Gales BJ. Bumetanide for autism spectrum disorder in children:a review of randomized controlled trials[J]. Ann Pharmacother, 2019, 53:537-544.
[3] Yu Y, Fu P, Yu Z, Xie M, Wang W, Luo X. NKCC1 inhibition attenuates chronic cerebral hypoperfusion-induced white matter lesions by enhancing progenitor cells of oligodendrocyte proliferation[J]. J Mol Neurosci, 2018, 64:449-458.
[4] Virtanen MA, Uvarov P, Hübner CA, Kaila K. NKCC1, an elusive molecular target in brain development:making sense of the existing data[J]. Cells, 2020, 9:2607.
[5] Markadieu N, Delpire E. Physiology and pathophysiology of SLC12A1/2 transporters[J]. Pflugers Arch, 2014, 466:91-105.
[6] Delpire E, Austin TM. Kinase regulation of Na+-K+-2Cl-cotransport in primary afferent neurons[J]. J Physiol, 2010, 588(Pt 18):3365-3373.
[7] Singh R, Almutairi MM, Pacheco-Andrade R, Almiahuob MY, Di Fulvio M. Impact of hybrid and complex N-Glycans on cell surface targeting of the endogenous chloride cotransporter Slc12a2[J]. Int J Cell Biol, 2015:ID505294.
[8] Sun H, Long S, Wu B, Liu J, Li G. NKCC1 involvement in the epithelial-to-mesenchymal transition is a prognostic biomarker in gliomas[J]. PeerJ, 2020, 8:e8787.
[9] Olde Engberink AHO, Meijer JH, Michel S. Chloride cotransporter KCC2 is essential for GABAergic inhibition in the SCN[J]. Neuropharmacology, 2018, 138:80-86.
[10] Chew TA, Orlando BJ, Zhang J, Latorraca NR, Wang A, Hollingsworth SA, Chen DH, Dror RO, Liao M, Feng L. Structure and mechanism of the cation-chloride cotransporter NKCC1[J]. Nature, 2019, 572:488-492.
[11] Bar-Peled L, Sabatini DM. Regulation of mTORC1 by amino acids[J]. Trends Cell Biol, 2014, 24:400-406.
[12] Demian WL, Persaud A, Jiang C, Coyaud É, Liu S, Kapus A, Kafri R, Raught B, Rotin D. The ion transporter NKCC1 links cell volume to cell mass regulation by suppressing mTORC1[J]. Cell Rep, 2019, 27:1886-1896.
[13] Wilke BU, Kummer KK, Leitner MG, Kress M. Chloride-the underrated ion in nociceptors[J]. Front Neurosci, 2020, 14:287.
[14] Albers HE, Walton JC, Gamble KL, McNeill JT, Hummer DL. The dynamics of GABA signaling:revelations from the circadian pacemaker in the suprachiasmatic nucleus[J]. Front Neuroendocrinol, 2017, 44:35-82.
[15] Choi HJ, Lee CJ, Schroeder A, Kim YS, Jung SH, Kim JS, Kim DY, Son EJ, Han HC, Hong SK, Colwell CS, Kim YI. Excitatory actions of GABA in the suprachiasmatic nucleus[J]. J Neurosci, 2008, 28:5450-5459.
[16] McNeill JT 4th, Walton JC, Ryu V, Albers HE. The excitatory effects of GABA within the suprachiasmatic nucleus:regulation of Na-K-2Cl cotransporters (NKCCs) by environmental lighting conditions[J]. J Biol Rhythms, 2020, 35:275-286.
[17] Mili?evi? N, Duursma A, Ten Asbroek ALMA, Felder-Schmittbuhl MP, Bergen AA. Does the circadian clock make RPE-mediated ion transport "tick" via SLC12A2(NKCC1)[J]? Chronobiol Int, 2019, 36:1592-1598.
[18] Ben-Ari Y. Excitatory actions of gaba during development:the nature of the nurture[J]. Nat Rev Neurosci, 2002, 3:728-739.
[19] Kumar V, Naik RS, Hillert M, Klein J. Effects of chloride flux modulators in an in vitro model of brain edema formation[J]. Brain Res, 2006, 1122:222-229.
[20] Shen CH, Lin JY, Chang YL, Wu SY, Peng CK, Wu CP, Huang KL. Inhibition of NKCC1 modulates alveolar fluid clearance and inflammation in ischemia-reperfusion lung injury via TRAF6-mediated pathways[J]. Front Immunol, 2018, 9:2049.
[21] Genç F, Kara M, Ünal Y, Uygur Küçükseymen E, Biçer Gömceli Y, Kaynar T, Tosun K, Kutlu G. Methylation of cation-chloride cotransporters NKCC1 and KCC2 in patients with juvenile myoclonic epilepsy[J]. Neurol Sci, 2019, 40:1007-1013.
[22] Huang H, Bhuiyan MIH, Jiang T, Song S, Shankar S, Taheri T, Li E, Schreppel P, Hintersteininger M, Yang SS, Lin SH, Molyneaux BJ, Zhang Z, Erker T, Sun D. A novel Na+-K+-Cl- cotransporter 1 inhibitor STS66* reduces brain damage in mice after ischemic stroke[J]. Stroke, 2019, 50:1021-1025.
[23] Randall J, Thorne T, Delpire E. Partial cloning and characterization of Slc12a2:the gene encoding the secretory Na+-K+-2Cl- cotransporter[J]. Am J Physiol, 1997, 273:C1267-1277.
[24] Cho HM, Lee HA, Kim HY, Han HS, Kim IK. Expression of Na+-K+-2Cl- cotransporter 1 is epigenetically regulated during postnatal development of hypertension[J]. Am J Hypertens, 2011, 24:1286-1293.
[25] Unal Y, Kara M, Genc F, Aslan Oztruk D, Bicer Gomceli Y, Kaynar T, Tosun K, Kutlu G. The methylation status of NKCC1 and KCC2 in the patients with refractory temporal lobe epilepsy[J]. Ideggyogy Sz, 2019, 72:181-186.
[26] Weidenfeld S, Kuebler WM. Cytokine-regulation of Na(+)-K(+)-Cl(-) cotransporter 1 and cystic fibrosis transmembrane conductance regulator-potential role in pulmonary inflammation and edema formation[J]. Front Immunol, 2017, 8:393.
[27] Pozdeev VI, Lang E, Görg B, Bidmon HJ, Shinde PV, Kircheis G, Herebian D, Pfeffer K, Lang F, Häussinger D, Lang KS, Lang PA. TNFα induced up-regulation of Na+, K+, 2Cl- cotransporter NKCC1 in hepatic ammonia clearance and cerebral ammonia toxicity[J]. Sci Rep, 2017, 7:7938.
[28] Huang LQ, Zhu GF, Deng YY, Jiang WQ, Fang M, Chen CB, Cao W, Wen MY, Han YL, Zeng HK. Hypertonic saline alleviates cerebral edema by inhibiting microglia-derived TNF-αand IL-1β-induced Na-K-Cl cotransporter up-regulation[J]. J Neuroinflammation, 2014, 11:102.
[29] Lytle C, Forbush B 3rd. The Na-K-Cl cotransport protein of shark rectal gland. Ⅱ. regulation by direct phosphorylation[J]. J Biol Chem, 1992, 267:25438-25443.
[30] Wang H, Yan Y, Kintner DB, Lytle C, Sun D. GABA-mediated trophic effect on oligodendrocytes requires Na-K-2Cl cotransport activity[J]. J Neurophysiol, 2003, 90:1257-1265.
[31] Wu D, Lai N, Deng R, Liang T, Pan P, Yuan G, Li X, Li H, Shen H, Wang Z, Chen G. Activated WNK3 induced by intracerebral hemorrhage deteriorates brain injury maybe via WNK3/SPAK/NKCC1 pathway[J]. Exp Neurol, 2020, 332:113386.
[32] Gagnon KB, Delpire E. Multiple pathways for protein phosphatase 1(PP1) regulation of Na-K-2Cl cotransporter (NKCC1) function:the N-terminal tail of the Na-K-2Cl cotransporter serves as a regulatory scaffold for Ste20-related proline/alanine-rich kinase (SPAK) AND PP1[J]. J Biol Chem, 2010, 285:14115-14121.
[33] Ponce-Coria J, Gagnon KB, Delpire E. Calcium-binding protein 39 facilitates molecular interaction between Ste20p proline alanine-rich kinase and oxidative stress response 1 monomers[J]. Am J Physiol Cell Physiol, 2012, 303:C1198-1205.
[34] Zagrean AM, Grigoras IF, Iesanu MI, Ionescu RB, Chitimus DM, Haret RM, Ianosi B, Ceanga M, Zagrean L. Neuronal transmembrane chloride transport has a time-dependent influence on survival of hippocampal cultures to oxygen-glucose deprivation[J]. Brain Sci, 2019, 9:360.
[35] Khanna A, Kahle KT, Walcott BP, Gerzanich V, Simard JM. Disruption of ion homeostasis in the neurogliovascular unit underlies the pathogenesis of ischemic cerebral edema[J]. Transl Stroke Res, 2014, 5:3-16.
[36] Fu XJ, Chu XF, Qi CJ. Oncosis-death mode of astrocytes under permanent focal cerebral ischemia[J]. Zhonghua Shen Jing Yi Xue Za Zhi, 2005, 4:979-982.[付学军, 褚晓凡, 亓传洁. 胀亡-持续性局灶脑缺血星形胶质细胞的死亡方式[J].中华神经医学杂志, 2005, 4:979-982.]
[37] Luo WD, Min JW, Huang WX, Wang X, Peng YY, Han S, Yin J, Liu WH, He XH, Peng BW. Vitexin reduces epilepsy after hypoxic ischemia in the neonatal brain via inhibition of NKCC1[J]. J Neuroinflammation, 2018, 15:186.
[38] Kintner DB, Luo J, Gerdts J, Ballard AJ, Shull GE, Sun D. Role of Na+-K+-Cl- cotransport and Na+/Ca2+ exchange in mitochondrial dysfunction in astrocytes following in vitro ischemia[J]. Am J Physiol Cell Physiol, 2007, 292:C1113-1122.
[39] Zeniya M, Sohara E, Kita S, Iwamoto T, Susa K, Mori T, Oi K, Chiga M, Takahashi D, Yang SS, Lin SH, Rai T, Sasaki S, Uchida S. Dietary salt intake regulates WNK3-SPAK-NKCC1 phosphorylation cascade in mouse aorta through angiotensin Ⅱ[J]. Hypertension, 2013, 62:872-878.
[40] Wu D, Zhang G, Zhao C, Yang Y, Miao Z, Xu X. Interleukin-18 from neurons and microglia mediates depressive behaviors in mice with post-stroke depression[J]. Brain Behav Immun, 2020, 88:411-420.
[41] Zeng X, Hu K, Chen L, Zhou L, Luo W, Li C, Zong W, Chen S, Gao Q, Zeng G, Jiang D, Li X, Zhou H, Ouyang DS. The effects of ginsenoside compound K against epilepsy by enhancing the γ-aminobutyric acid signaling pathway[J]. Front Pharmacol, 2018, 9:1020.
[42] Wang F, Wang X, Shapiro LA, Cotrina ML, Liu W, Wang EW, Gu S, Wang W, He X, Nedergaard M, Huang JH. NKCC1 up-regulation contributes to early post-traumatic seizures and increased post-traumatic seizure susceptibility[J]. Brain Struct Funct, 2017, 222:1543-1556.
[43] González MI. Regulation of the cell surface expression of chloride transporters during epileptogenesis[J]. Neurosci Lett, 2016, 628:213-218.
[44] Pressler RM, Boylan GB, Marlow N, Blennow M, Chiron C, Cross JH, de Vries LS, Hallberg B, Hellström-Westas L, Jullien V, Livingstone V, Mangum B, Murphy B, Murray D, Pons G, Rennie J, Swarte R, Toet MC, Vanhatalo S, Zohar S; NEonatal seizure treatment with Medication Off-patent (NEMO) consortium. Bumetanide for the treatment of seizures in newborn babies with hypoxic ischaemic encephalopathy (NEMO):an open-label, dose finding, and feasibility phase 1/2 trial[J]. Lancet Neurol, 2015, 14:469-477.
[45] Gharaylou Z, Tafakhori A, Agah E, Aghamollaii V, Kebriaeezadeh A, Hadjighassem M. A preliminary study evaluating the safety and efficacy of bumetanide, an NKCC1 inhibitor, in patients with drug-resistant epilepsy[J]. CNS Drugs, 2019, 33:283-291.
[46] Zhang Y, Weinberg RA. Epithelial-to-mesenchymal transition in cancer:complexity and opportunities[J]. Front Med, 2018, 12:361-373.
[47] Ma H, Li T, Tao Z, Hai L, Tong L, Yi L, Abeysekera IR, Liu P, Xie Y, Li J, Yuan F, Zhang C, Yang Y, Ming H, Yu S, Yang X. NKCC1 promotes EMT-like process in GBM via RhoA and Rac1 signaling pathways[J]. J Cell Physiol, 2019, 234:1630-1642.
[48] Luo L, Wang J, Ding D, Hasan MN, Yang SS, Lin SH, Schreppel P, Sun B, Yin Y, Erker T, Sun D. Role of NKCC1 activity in glioma K + homeostasis and cell growth:new insights with the bumetanide-derivative STS66[J]. Front Physiol, 2020, 11:911.
[49] Ilkhanizadeh S, Sabelström H, Miroshnikova YA, Frantz A, Zhu W, Idilli A, Lakins JN, Schmidt C, Quigley DA, Fenster T, Yuan E, Trzeciak JR, Saxena S, Lindberg OR, Mouw JK, Burdick JA, Magnitsky S, Berger MS, Phillips JJ, Arosio D, Sun D, Weaver VM, Weiss WA, Persson AI. Antisecretory factor-mediated inhibition of cell volume dynamics produces antitumor activity in glioblastoma[J]. Mol Cancer Res, 2018, 16:777-790.
[50] Luo L, Guan X, Begum G, Ding D, Gayden J, Hasan MN, Fiesler VM, Dodelson J, Kohanbash G, Hu B, Amankulor NM, Jia W, Castro MG, Sun B, Sun D. Blockade of cell volume regulatory protein NKCC1 increases TMZ-induced glioma apoptosis and reduces astrogliosis[J]. Mol Cancer Ther, 2020, 19:1550-1561.
[51] Dienel SJ, Lewis DA. Alterations in cortical interneurons and cognitive function in schizophrenia[J]. Neurobiol Dis, 2019, 131:104208.
[52] Hyde TM, Lipska BK, Ali T, Mathew SV, Law AJ, Metitiri OE, Straub RE, Ye T, Colantuoni C, Herman MM, Bigelow LB, Weinberger DR, Kleinman JE. Expression of GABA signaling molecules KCC2, NKCC1, and GAD1 in cortical development and schizophrenia[J]. J Neurosci, 2011, 31:11088-11095.
[53] Yang SS, Huang CL, Chen HE, Tung CS, Shih HP, Liu YP. Effects of SPAK knockout on sensorimotor gating, novelty exploration, and brain area-dependent expressions of NKCC1 and KCC2 in a mouse model of schizophrenia[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2015, 61:30-36.
[54] Arion D, Lewis DA. Altered expression of regulators of the cortical chloride transporters NKCC1 and KCC2 in schizophrenia[J]. Arch Gen Psychiatry, 2011, 68:21-31. |