1 |
Leite Silva ABR, Gonçalves de Oliveira RW, Diógenes GP, de Castro Aguiar MF, Sallem CC, Lima MPP, de Albuquerque Filho LB, Peixoto de Medeiros SD, Penido de Mendonça LL, de Santiago Filho PC, Nones DP, da Silva Cardoso PMM, Ribas MZ, Galvão SL, Gomes GF, Bezerra de Menezes AR, Dos Santos NL, Mororó VM, Duarte FS, Dos Santos JCC. Premotor, nonmotor and motor symptoms of Parkinson's disease: a new clinical state of the art. Ageing Res Rev, 2023, 84: 101834.
doi: 10.1016/j.arr.2022.101834
|
2 |
Chen ZJ, Ma J, Tang N, Yang YD, He QY, Zhou JH. Disease burden trend analysis and prediction of Parkinson's disease in China. Zhongguo Man Xing Bing Yu Fang Yu Kong Zhi, 2022, 30: 649- 654.
URL
|
|
陈芝君, 马建, 唐娜, 阳益德, 贺权源, 周军华. 中国帕金森病疾病负担变化趋势分析及预测. 中国慢性病预防与控制, 2022, 30: 649- 654.
URL
|
3 |
Liu W, Zhao H, Xia ZY, Liu HY, Lu ZY. Pathological evolution research progress of Parkinson's disease. Shen Jing Sun Shang Yu Gong Neng Chong Jian, 2022, 17: 148- 151.
URL
|
|
刘旺, 赵虹, 夏兆云, 刘慧瑛, 陆征宇. 帕金森病相关病理演变研究进展. 神经损伤与功能重建, 2022, 17: 148- 151.
URL
|
4 |
Qi X, Li JH, Zhu YF, Yu L, Wang P. Abnormal modification of alpha-synuclein and its mechanism in Parkinson's disease. Zhongguo Zu Zhi Gong Cheng Yan Jiu, 2024, 28: 1301- 1306.
doi: 10.12307/2024.228
|
|
齐雪, 李家慧, 朱远峰, 禹璐, 王鹏. α-突触核蛋白的异常修饰及在帕金森病中的作用机制. 中国组织工程研究, 2024, 28: 1301- 1306.
doi: 10.12307/2024.228
|
5 |
Pinna A, Parekh P, Morelli M. Serotonin 5-HT1A receptors and their interactions with adenosine A2A receptors in Parkinson's disease and dyskinesia. Neuropharmacology, 2023, 226: 109411.
doi: 10.1016/j.neuropharm.2023.109411
|
6 |
La XM, Guo Y, Liu J, Li XY, Zhang L. Advances in the role of 5-HT neurotransmitter system in psychiatric symptoms and cognitive impairment associated with Parkinson's disease. Sheng Li Ke Xue Jin Zhan, 2023, 54: 177- 184.
doi: 10.3969/j.issn.0559-7765.2023.03.003
|
|
喇雪梅, 郭媛, 刘健, 李小颖, 张莉. 5-HT递质系统调节帕金森病精神症状和认知障碍的研究进展. 生理科学进展, 2023, 54: 177- 184.
doi: 10.3969/j.issn.0559-7765.2023.03.003
|
7 |
Li XX, Lu SF, Zhu BM, Jing XY, Fu SP. Research progress of 5-HT and gut microbiota and its role in gut-brain related diseases. Zhongguo Kang Fu Yi Xue Za Zhi, 2019, 34: 116- 119.
doi: 10.3969/j.issn.1001-1242.2019.01.026
|
|
李潇潇, 卢圣锋, 朱冰梅, 景欣悦, 傅淑平. 5-HT与肠道菌群及其在肠-脑相关疾病中的作用研究进展. 中国康复医学杂志, 2019, 34: 116- 119.
doi: 10.3969/j.issn.1001-1242.2019.01.026
|
8 |
Li XL, Zhang QD. Characteristics of gastrointestinal dysfunction and risk factors in patients with Parkinson's disease. Zhonghua Xiao Hua Bing Yu Ying Xiang Za Zhi (Dian Zi Ban), 2023, 13: 145- 149.
doi: 10.3877/cma.j.issn.2095-2015.2023.03.004
|
|
李玺琳, 章邱东. 帕金森病患者胃肠功能障碍特点及其风险因素分析. 中华消化病与影像杂志(电子版), 2023, 13: 145- 149.
doi: 10.3877/cma.j.issn.2095-2015.2023.03.004
|
9 |
Guzel T, Mirowska-Guzel D. The role of serotonin neurotransmission in gastrointestinal tract and pharmacotherapy. Molecules, 2022, 27: 1680.
doi: 10.3390/molecules27051680
|
10 |
Qin ZW, Wang S, Bai Y, Li Y, Qiao GQ, Wei B, Fu Y. Effect of acupuncture on GDNF content and gastrointestinal physiological indexes in different parts of PD gastrointestinal dysfunction rats. Xian Dai Sheng Wu Yi Xue Jin Zhan, 2022, 22: 615- 620.
URL
|
|
秦正巍, 王顺, 白妍, 李元, 乔国强, 韦波, 付艺. 针刺对PD胃肠功能障碍大鼠不同部位GDNF含量及胃肠生理指标的影响. 现代生物医学进展, 2022, 22: 615- 620.
URL
|
11 |
Zhu XQ, Liu GY, Zeng QY, Qin DY, Zhou XQ, Zhang Y, Zhang DK. Research progress in 5-hydroxytryptamine and irritable bowel syndrome. Yi Xue Zong Shu, 2022, 28: 2482- 2486.
doi: 10.3969/j.issn.1006-2084.2022.12.034
|
|
朱小琴, 刘光耀, 曾琪璎, 覃冬媛, 周雪琪, 张宇, 张德奎. 5-羟色胺与肠易激综合征的研究进展. 医学综述, 2022, 28: 2482- 2486.
doi: 10.3969/j.issn.1006-2084.2022.12.034
|
12 |
Shi Y, Qiao CM, Zhou Y, Wu J, Cui C, Hong H, Jia XB, Huang SB, Yao L, Zhao WJ, Shen YQ. Protective effects of prucalopride in MPTP-induced Parkinson's disease mice: neurochemistry, motor function and gut barrier. Biochem Biophys Res Commun, 2021, 556: 16- 22.
doi: 10.1016/j.bbrc.2021.03.109
|
13 |
Zhang X, Li Y, Liu C, Fan R, Wang P, Zheng L, Hong F, Feng X, Zhang Y, Li L, Zhu J. Alteration of enteric monoamines with monoamine receptors and colonic dysmotility in 6-hydroxydopamine-induced Parkinson's disease rats. Transl Res, 2015, 166: 152- 162.
doi: 10.1016/j.trsl.2015.02.003
|
14 |
Koza J, Liebert A, Hołyńska-Iwan I, Piskorska P. Reduced sodium absorption in the colon under serotonin is a potential factor aggravating secretory diarrshea. Adv Clin Exp Med, 2023, 32: 481- 488.
|
15 |
Shi Y. Effects of 5-HT4 receptor antagonists on neuropathology in mice with Parkinson's disease through the gut-brain axis[D]. Wuxi: Jiangnan University, 2021.
|
|
石芸. 5-HT4受体拮抗剂通过肠-脑轴加剧帕金森病小鼠神经病理的作用研究[D]. 无锡: 江南大学, 2021.
|
16 |
Manolakis AC, Broers C, Geysen H, Goelen N, Van Houtte B, Rommel N, Vanuytsel T, Tack J, Pauwels A. Effect of citalopram on esophageal motility in healthy subjects: implications for reflux episodes, dysphagia, and globus. Neurogastroenterol Motil, 2019, 31: e13632.
doi: 10.1111/nmo.13632
|
17 |
Li L, Wang F, Lu ZZ, Zhang LF. The use of Ofactory Test of Parkinson's Disease (KinPamor) in evaluation of olfactory function in Parkinson's disease. Zhongguo Xian Dai Shen Jing Ji Bing Za Zhi, 2022, 22: 163- 167.
doi: 10.3969/j.issn.1672-6731.2022.03.007
|
|
李凌, 王峰, 卢镇泽, 张丽芳. 帕金森病嗅觉障碍辅助诊断卡对帕金森病患者嗅觉功能的评估作用. 中国现代神经疾病杂志, 2022, 22: 163- 167.
doi: 10.3969/j.issn.1672-6731.2022.03.007
|
18 |
Wu QZ, Wang Q. Research progress on the correlation between hyposmia and non-motor symptoms in Parkinson's disease. Zhong Feng Yu Shen Jing Ji Bing Za Zhi, 2022, 39: 1052- 1056.
URL
|
|
吴巧珍, 王强. 帕金森病嗅觉减退与非运动症状的相关性研究进展. 中风与神经疾病杂志, 2022, 39: 1052- 1056.
URL
|
19 |
Ren P, Chen YL, Zhang XW. Olfactory disorder in Parkinson's disease. Ji Chu Yi Xue Yu Lin Chuang, 2023, 43: 994- 997.
URL
|
|
任鹏, 陈雅丽, 张娴文. 帕金森病嗅觉障碍的研究进展. 基础医学与临床, 2023, 43: 994- 997.
URL
|
20 |
Morais LH, Hara DB, Bicca MA, Poli A, Takahashi RN. Early signs of colonic inflammation, intestinal dysfunction, and olfactory impairments in the rotenone-induced mouse model of Parkinson's disease. Behav Pharmacol, 2018, 29(2 and 3-Spec Issue): 199- 210.
|
21 |
Sardar D, Cheng YT, Woo J, Choi DJ, Lee ZF, Kwon W, Chen HC, Lozzi B, Cervantes A, Rajendran K, Huang TW, Jain A, Arenkiel BR, Maze I, Deneen B. Induction of astrocytic Slc22a3 regulates sensory processing through histone serotonylation. Science, 2023, 380: eade0027.
doi: 10.1126/science.ade0027
|
22 |
Yu LY, Peng L, Luo T, Huang CC, Wang ZX. Relationship study between sleep disorders and EEG activity, neuropsychological indicators and health-related quality of life in patients with Parkinson's disease. Xian Dai Sheng Wu Yi Xue Jin Zhan, 2022, 22: 3863- 3867.
URL
|
|
于利雅, 彭蕾, 罗婷, 黄陈程, 王兆霞. 帕金森病患者睡眠障碍与脑电图活动、神经心理学指标和健康相关生活质量的关系研究. 现代生物医学进展, 2022, 22: 3863- 3867.
URL
|
23 |
Samizadeh MA, Fallah H, Toomarisahzabi M, Rezaei F, Rahimi-Danesh M, Akhondzadeh S, Vaseghi S. Parkinson's disease: a narrative review on potential molecular mechanisms of sleep disturbances, REM behavior disorder, and melatonin. Brain Sci, 2023, 13: 914.
doi: 10.3390/brainsci13060914
|
24 |
Wang J, Sun J, Gao L, Zhang D, Chen L, Wu T. Common and unique dysconnectivity profiles of dorsal and median raphe in Parkinson's disease. Hum Brain Mapp, 2023, 44: 1070- 1078.
doi: 10.1002/hbm.26139
|
25 |
Meloni M, Figorilli M, Carta M, Tamburrino L, Cannas A, Sanna F, Defazio G, Puligheddu M. Preliminary finding of a randomized, double-blind, placebo-controlled, crossover study to evaluate the safety and efficacy of 5-hydroxytryptophan on REM sleep behavior disorder in Parkinson's disease. Sleep Breath, 2022, 26: 1023- 1031.
doi: 10.1007/s11325-021-02417-w
|
26 |
Stefani A, Santamaria J, Iranzo A, Hackner H, Schenck CH, Högl B. Nelotanserin as symptomatic treatment for rapid eye movement sleep behavior disorder: a double-blind randomized study using video analysis in patients with dementia with Lewy bodies or Parkinson's disease dementia. Sleep Med, 2021, 81: 180- 187.
doi: 10.1016/j.sleep.2021.02.038
|
27 |
Li X, Ren N, Wang M, Chen XJ, Chen L. Correlation between the time from rapid eye movement sleep behavior disorder to disease onset and clinical characteristics in Parkinson's disease. Zhongguo Xian Dai Shen Jing Ji Bing Za Zhi, 2022, 22: 168- 172.
doi: 10.3969/j.issn.1672-6731.2022.03.008
|
|
李欣, 任宁, 王敏, 陈学姣, 陈蕾. 快速眼动睡眠期行为障碍发病至运动症状出现时间间隔与帕金森病临床特征之相关研究. 中国现代神经疾病杂志, 2022, 22: 168- 172.
doi: 10.3969/j.issn.1672-6731.2022.03.008
|
28 |
Laux G. Parkinson and depression: review and outlook. J Neural Transm (Vienna), 2022, 129: 601- 608.
doi: 10.1007/s00702-021-02456-3
|
29 |
Erritzoe D, Godlewska BR, Rizzo G, Searle GE, Agnorelli C, Lewis Y, Ashok AH, Colasanti A, Boura I, Farrell C, Parfitt H, Howes O, Passchier J, Gunn RN, Politis M, Nutt DJ, Cowen PJ, Knudsen GM, Rabiner EA. Brain serotonin release is reduced in patients with depression: a[11C]Cimbi-36 positron emission tomography study with a D-amphetamine challenge. Biol Psychiatry, 2023, 93: 1089- 1098.
doi: 10.1016/j.biopsych.2022.10.012
|
30 |
Miquel-Rio L, Sarriés-Serrano U, Pavia-Collado R, Meana JJ, Bortolozzi A. The role of α-synuclein in the regulation of serotonin system: physiological and pathological features. Biomedicines, 2023, 11: 541.
doi: 10.3390/biomedicines11020541
|
31 |
Huang R, Li XH, Chen WW. Effects of rTMS combined with paroxetine on cognitive status, depression symptoms, serum 5-HT and IL-1β in PD-D patients. Guo Ji Jing Shen Bing Xue Za Zhi, 2023, 50: 466- 468.
URL
|
|
黄荣, 李晓晖, 陈文武. 重复经颅磁刺激联合帕罗西汀对帕金森合并抑郁患者认知、情绪及血清5-HT、IL-1β水平的影响. 国际精神病学杂志, 2023, 50: 466- 468.
URL
|
32 |
Wu CJ. Clinical effect of escitalopram in the treatment of Parkinson's disease with depression. Lin Chuang He Li Yong Yao Za Zhi, 2021, 14: 62- 64.
URL
|
|
吴长江. 艾司西酞普兰治疗帕金森合并抑郁患者的临床效果. 临床合理用药杂志, 2021, 14: 62- 64.
URL
|
33 |
Miquel-Rio L, Alarcón-Arís D, Torres-López M, Cóppola-Segovia V, Pavia-Collado R, Paz V, Ruiz-Bronchal E, Campa L, Casal C, Montefeltro A, Vila M, Artigas F, Revilla R, Bortolozzi A. Human α-synuclein overexpression in mouse serotonin neurons triggers a depressive-like phenotype: rescue by oligonucleotide therapy. Transl Psychiatry, 2022, 12: 79.
doi: 10.1038/s41398-022-01842-z
|
34 |
Tang GY, Wang RJ, Guo Y, Liu J. 5-HT1B receptor-AC-PKA signal pathway in the lateral habenula is involved in the regulation of depressive-like behaviors in 6-hydroxydopamine-induced Parkinson's rats. Neurol Res, 2023, 45: 127- 137.
doi: 10.1080/01616412.2022.2124797
|
35 |
Gu SM, Yu E, Kim YE, Yoon SS, Lee D, Hong JT, Yun J. Peroxiredoxin 6 overexpression induces anxiolytic and depression-like behaviors by regulating the serotonergic pathway in mice. Biomol Ther (Seoul), 2022, 30: 334- 339.
doi: 10.4062/biomolther.2021.169
|
36 |
Angelopoulou E, Bougea A, Paudel YN, Georgakopoulou VE, Papageorgiou SG, Piperi C. Genetic insights into the molecular pathophysiology of depression in Parkinson's disease. Medicina (Kaunas), 2023, 59: 1138.
doi: 10.3390/medicina59061138
|
37 |
Li C, Jia J, Liu XY, Tian SL. Research progress of pain rehabilitation in Parkinson's disease. Zhongguo Yi Kan, 2023, 58: 123- 127.
doi: 10.3969/j.issn.1008-1070.2023.02.003
|
|
李冲, 贾杰, 刘向云, 田石榴. 帕金森病疼痛的康复研究进展. 中国医刊, 2023, 58: 123- 127.
doi: 10.3969/j.issn.1008-1070.2023.02.003
|
38 |
Campos ACP, Berzuino MB, Hernandes MS, Fonoff ET, Pagano RL. Monoaminergic regulation of nociceptive circuitry in a Parkinson's disease rat model. Exp Neurol, 2019, 318: 12- 21.
doi: 10.1016/j.expneurol.2019.04.015
|
39 |
Wang CT, Mao CJ, Zhang XQ, Zhang CY, Lv DJ, Yang YP, Xia KL, Liu JY, Wang F, Hu LF, Xu GY, Liu CF. Attenuation of hyperalgesia responses via the modulation of 5-hydroxytryptamine signalings in the rostral ventromedial medulla and spinal cord in a 6-hydroxydopamine-induced rat model of Parkinson's disease. Mol Pain, 2017, 13: 1744806917691525.
|
40 |
Li CJ, Zhang LG, Liu LB, An MQ, Dong LG, Gu HY, Dai YP, Wang F, Mao CJ, Liu CF. Inhibition of spinal 5-HT3 receptor and spinal dorsal horn neuronal excitability alleviates hyperalgesia in a rat model of Parkinson's disease. Mol Neurobiol, 2022, 59: 7253- 7264.
doi: 10.1007/s12035-022-03034-8
|
41 |
Diez-Cirarda M, Cabrera-Zubizarreta A, Murueta-Goyena A, Strafella AP, Del Pino R, Acera M, Lucas-Jiménez O, Ibarretxe-Bilbao N, Tijero B, Gómez-Esteban JC, Gabilondo I. Multimodal visual system analysis as a biomarker of visual hallucinations in Parkinson's disease. J Neurol, 2023, 270: 519- 529.
doi: 10.1007/s00415-022-11427-x
|
42 |
Bozymski KM, Lowe DK, Pasternak KM, Gatesman TL, Crouse EL. Pimavanserin: a novel antipsychotic for Parkinson's disease psychosis. Ann Pharmacother, 2017, 51: 479- 487.
doi: 10.1177/1060028017693029
|
43 |
Tripathi A, Nasrallah HA, Pillai A. Pimavanserin treatment increases plasma brain-derived neurotrophic factor levels in rats. Front Neurosci, 2023, 17: 1237726.
doi: 10.3389/fnins.2023.1237726
|
44 |
Lavigne EG, Buttigieg D, Steinschneider R, Burstein ES. Pimavanserin promotes trophic factor release and protects cultured primary dopaminergic neurons exposed to MPP+in a GDNF-dependent manner. ACS Chem Neurosci, 2021, 12: 2088- 2098.
doi: 10.1021/acschemneuro.0c00751
|
45 |
Tsitsipa E, Rogers J, Casalotti S, Belessiotis-Richards C, Zubko O, Weil RS, Howard R, Bisby JA, Reeves S. Selective 5HT3 antagonists and sensory processing: a systematic review. Neuropsychopharmacology, 2022, 47: 880- 890.
doi: 10.1038/s41386-021-01255-4
|