[1] Meyer NJ, Prescott HC. Sepsis and septic shock[J]. N Engl J Med, 2024, 391: 2133-2146.doi:10.1056/nejmra2403213. [2] Selim SA, El-Baset SAA, Kattaia AAA, et al. Bone marrow-derived mesenchymal stem cells ameliorate liver injury in a rat model of sepsis by activating Nrf2 signaling[J]. Histochem Cell Biol, 2019, 151: 249-262.doi:10.1007/s00418-018-1731-4. [3] Ding JY, Chen MJ, Wu LF, et al. Mesenchymal stem cell-derived extracellular vesicles in skin wound healing: roles, opportunities and challenges[J]. Mil Med Res, 2023, 10: 36.doi:10.1186/s40779-023-00472-w. [4] Aghayan AH, Mirazimi Y, Fateh K, et al. Therapeutic effects of mesenchymal stem cell-derived extracellular vesicles in sepsis: a systematic review and Meta-analysis of preclinical studies[J]. Stem Cell Rev Rep, 2024, 20: 1480-1500.doi:10.1007/s12015-024-10741-3. [5] Khosrojerdi A, Soudi S, Hosseini AZ, et al. Immunomodulatory and therapeutic effects of mesenchymal stem cells on organ dysfunction in sepsis[J]. Shock, 2021, 55: 423-440.doi:10.1097/SHK.0000000000001644. [6] Sun XY, Ding XF, Liang HY, et al. Efficacy of mesenchymal stem cell therapy for sepsis: a Meta-analysis of preclinical studies[J]. Stem Cell Res Ther, 2020, 11: 214.doi:10.1186/s13287-020-01730-7. [7] Ou Q, Tan L, Shao Y, et al. Electrostatic charge-mediated apoptotic vesicle biodistribution attenuates sepsis by switching neutrophil NETosis to apoptosis[J]. Small, 2022, 18: e2200306.doi:10.1002/smll.202200306. [8] Dos Santos CC, Amatullah H, Vaswani CM, et al. Mesenchymal stromal (stem) cell therapy modulates miR-193b-5p expression to attenuate sepsis-induced acute lung injury[J]. Eur Respir J, 2022, 59.doi:10.1183/13993003.04216-2020. [9] Ma Y, She X, Liu Y, et al. MSC-derived exosomal miR-140-3p improves cognitive dysfunction in sepsis-associated encephalopathy by HMGB1 and S-lactoylglutathione metabolism[J]. Commun Biol, 2024, 7: 562.doi:10.1038/s42003-024-06236-z. [10] Aliniay-Sharafshadehi S, Yousefi MH, Ghodratie M, et al. Exploring the therapeutic potential of different sources of mesenchymal stem cells: a novel approach to combat burn wound infections[J]. Front Microbiol, 2024, 15: 1495011.doi:10.3389/fmicb.2024.1495011. [11] Lehmann TP, Golik M, Olejnik J, et al. Potential applications of using tissue-specific EVs in targeted therapy and vaccinology[J]. Biomed Pharmacother, 2023, 166: 115308.doi:10.1016/j.biopha.2023.115308. [12] He X, Ai S, Guo W, et al. Umbilical cord-derived mesenchymal stem (stromal) cells for treatment of severe sepsis: aphase 1 clinical trial[J]. Transl Res, 2018, 199: 52-61.doi:10.1016/j.trsl.2018.04.006. [13] Galstian GM, Parovichnikova EN, Makarova PM, et al. The results of the Russian clinical trial of mesenchymal stromal cells (MSCs) in severe neutropenic patients (pts) with septic shock (SS) (RUMCESS trial)[J]. Blood, 2015, 126: 2220.doi:10.1182/blood.V126.23.2220.2220. [14] Meng SS, Guo FM, Zhang XW, et al. mTOR/STAT-3 pathway mediates mesenchymal stem cell-secreted hepatocyte growth factor protective effects against lipopolysaccharide-induced vascular endothelial barrier dysfunction and apoptosis[J]. J Cell Biochem, 2019, 120: 3637-3650.doi:10.1002/jcb.27642. [15] Hashemian SMR, Aliannejad R, Zarrabi M, et al. Mesenchymal stem cells derived from perinatal tissues for treatment of critically ill COVID-19-induced ARDS patients: a case series[J]. Stem Cell Res Ther, 2021, 12: 91.doi:10.1186/s13287-021-02165-4. [16] Matthay MA, Calfee CS, Zhuo H, et al. Treatment with allogeneic mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome (START study): a randomised phase 2a safety trial[J]. Lancet Respir Med, 2019, 7: 154-162.doi:10.1016/S2213-260030418-1. [17] Singer NG, Caplan AI. Mesenchymal stem cells: mechanisms of inflammation[J]. Annu Rev Pathol: Pathol Mech Dis, 2011, 6: 457-478. [18] Ye Q, Qiu X, Wang J, et al. MSCs-derived apoptotic extracellular vesicles promote muscle regeneration by inducing Pannexin 1 channel-dependent creatine release by myoblasts[J] Int J Oral Sci, 2023, 15: 7.doi:10.1038/s41368-022-00205-0. [19] Zhang Q, Lai D. Application of human amniotic epithelial cells in regenerative medicine: a systematic review[J]. Stem Cell Res Ther, 2020, 11: 439.doi:10.1186/s13287-020-01951-w. [20] Chi D, Chen Y, Xiang C, et al. Human amnion epithelial cells and their derived exosomes alleviate sepsis-associated acute kidney injury via mitigating endothelial dysfunction[J]. Front Med, 2022, 9: 829606.doi:10.3389/fmed.2022.829606. [21] Sato Y, Ochiai D, Abe Y, et al. Prophylactic therapy with human amniotic fluid stem cells improved survival in a rat model of lipopolysaccharide-induced neonatal sepsis through immunomodulation via aggregates with peritoneal macrophages[J]. Stem Cell Res Ther, 2020, 11: 300.doi:10.1186/s13287-020-01809-1. [22] Abe Y, Ochiai D, Sato Y, et al. Prophylactic therapy with human amniotic fluid stem cells improves long-term cognitive impairment in rat neonatal sepsis survivors[J]. Int J Mol Sci, 2020, 21.doi:10.3390/ijms21249590. [23] Li Z, Song Y, Yuan P, et al. Antibacterial fusion protein BPI21/LL-37 modification enhances the therapeutic efficacy of hUC-MSCs in sepsis[J]. Mol Ther, 2020, 28: 1806-1817.doi:10.1016/j.ymthe.2020.05.014. [24] Lu L, Quan L, Li J, et al. Bioengineered stem cell membrane functionalized nanoparticles combine anti-inflammatory and antimicrobial properties for sepsis treatment[J]. J Nanobiotechnol, 2023, 21: 170.doi:10.1186/s12951-023-01913-3. [25] Sinha P, Kerchberger VE, Willmore A, et al. Identifying molecular phenotypes in sepsis: an analysis of two prospective observational cohorts and secondary analysis of two randomised controlled trials[J]. Lancet Respir Med, 2023, 11: 965-974. doi:10.1016/S2213-260000237-0. |