[1] Liu Kaixuan, Hao Xiaoyu, Gao Yangfan, et al. CUL4B protects kidneys from acute injury by restraining p53/PAI-1 signaling[J]. Cell Death Dis, 2024, 15:915. doi: 10.1038/s41419-024-07299-w. [2] 张欣, 廖晓辉. 线粒体功能障碍在急性肾损伤向慢性肾脏疾病转变中的作用[J]. 基础医学与临床, 2021, 41: 589-592. [3] 何也川, 王丹玲. SFXN 家族蛋白的功能及其在疾病中作用的研究进展[J]. 中南医学科学杂志, 2024, 52: 157-162. [4] Jackson TD, Hock DH, Fujihara KM, et al. The TIM22 complex mediates the import of sideroflexins and is required for efficient mitochondrial one-carbon metabolism[J]. Mol Biol Cell, 2021, 32: 475-491. [5] Xu Z, Zhang M, Wang W, et al. Dihydromyricetin attenuates cisplatin-induced acute kidney injury by reducing oxidative stress, inflammation and ferroptosis[J]. Toxicol Appl Pharmacol, 2023, 473:116595.doi: 10.1016/j.taap.2023.116595. [6] Li S, Livingston MJ, Ma Z, et al. Tubular cell senescence promotes maladaptive kidney repair and chronic kidney disease after cisplatin nephrotoxicity[J]. JCI Insight, 2023, 8: e166643.doi: 10.1172/jci.insight.166643. [7] Fu Y, Xiang Y, Wei Q, et al. Rodent models of AKI and AKI-CKD transition: an update in 2024[J]. Am J Physiol Renal Physiol, 2024, 326: F563-F583. [8] See EJ, Jayasinghe K, Glassford N, et al. Long-term risk of adverse outcomes after acute kidney injury: a systematic review and meta-analysis of cohort studies using consensus definitions of exposure[J]. Kidney Int, 2019, 95:160-172. [9] Chang LY, Chao YL, Chiu CC, et al. Mitochondrial signaling, the mechanisms of AKI-to-CKD transition and potential treatment targets[J]. Int J Mol Sci, 2024, 25:1518.doi: 10.3390/ijms25031518. [10] Zhang L, Miao M, Xu X, et al. From physiology to pathology: the role of mitochondria in acute kidney injuries and chronic kidney diseases[J]. Kidney Dis (Basel), 2023, 9:342-357. [11] Kory N, Wyant GA, Prakash G, et al. SFXN1 is a mitochondrial serine transporter required for one-carbon metabolism[J]. Science, 2018; 362: eaat9528.doi: 10.3390/ijms25031518. [12] Andriani L, Ling YX, Yang SY, et al. Sideroflexin-1 promotes progression and sensitivity to lapatinib in triple-negative breast cancer by inhibiting TOLLIP-mediated autophagic degradation of CIP2A[J]. Cancer Lett, 2024, 597:217008.doi: 10.1016/j.canlet.2024.217008. [13] Ledahawsky LM, Terzenidou ME, Edwards R, et al. The mitochondrial protein Sideroflexin 3 (SFXN3) influences neurodegeneration pathways in vivo[J]. FEBS J, 2022, 289:3894-3914. [14] Tesfay L, Paul BT, Hegde P, et al. Complementary anti-cancer pathways triggered by inhibition of sideroflexin 4 in ovarian cancer[J]. Sci Rep, 2022, 12:19936.doi: 10.1038/s41598-022-24391-3. [15] Chen Y, Qian J, Ding P, et al. Elevated SFXN2 limits mitochondrial autophagy and increases iron-mediated energy production to promote multiple myeloma cell proliferation[J]. Cell Death Dis, 2022, 13:822.doi: 10.1038/s41419-022-05272-z |