[1] Alexander BM, Galanis E, Yung WK, Ballman KV, Boyett JM, Cloughesy TF, Degroot JF, Huse JT, Mann B, Mason W, Mellinghoff IK, Mikkelsen T, Mischel PS, O'Neill BP, Prados MD, Sarkaria JN, Tawab-Amiri A, Trippa L, Ye X, Ligon KL, Berry DA, Wen PY. Brain malignancy steering committee clinical trials planning workshop:report from the targeted therapies working group[J]. Neuro Oncol, 2015, 17:180-188. [2] Guishard AF, Yakisich JS, Azad N, Iyer AKV. Translational gap in ongoing clinical trials for glioma[J]. J Clin Neurosci, 2018, 47:28-42. [3] Jin X, Kim LJ, Wu Q, Wallace LC, Prager BC, Sanvoranart T, Gimple RC, Wang X, Mack SC, Miller TE, Huang P, Valentim CL, Zhou QG, Barnholtz-Sloan JS, Bao S, Sloan AE, Rich JN. Targeting glioma stem cells through combined BMI1 and EZH2 inhibition[J]. Nat Med, 2017, 23:1352-1361. [4] Macdonald DR, Cascino TL, Schold SC Jr, Cairncross JG. Response criteria for phase Ⅱ studies of supratentorial malignant glioma[J]. J Clin Oncol, 1990, 8:1277-1280. [5] Sharma M, Juthani RG, Vogelbaum MA. Updated response assessment criteria for high-grade glioma:beyond the MacDonald criteria[J]. Chin Clin Oncol, 2017, 6:37. [6] van den Bent MJ, Vogelbaum MA, Wen PY, Macdonald DR, Chang SM. End point assessment in gliomas:novel treatments limit usefulness of classical Macdonald's criteria[J]. J Clin Oncol, 2009, 27:2905-2908. [7] Ulmer S, Braga TA, Barker FG 2nd, Lev MH, Gonzalez RG, Henson JW. Clinical and radiographic features of peritumoral infarction following resection of glioblastoma[J]. Neurology, 2006, 67:1668-1670. [8] Hygino da Cruz LC Jr, Rodriguez I, Domingues RC, Gasparetto EL, Sorensen AG. Pseudoprogression and pseudoresponse:imaging challenges in the assessment of posttreatment glioma[J]. AJNR Am J Neuroradiol, 2011, 32:1978-1985. [9] Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO; European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups, National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma[J]. N Engl J Med, 2005, 352:987-996. [10] Perry JR, Laperriere N, O'Callaghan CJ, Brandes AA, Menten J, Phillips C, Fay M, Nishikawa R, Cairncross JG, Roa W, Osoba D, Rossiter JP, Sahgal A, Hirte H, Laigle-Donadey F, Franceschi E, Chinot O, Golfinopoulos V, Fariselli L, Wick A, Feuvret L, Back M, Tills M, Winch C, Baumert BG, Wick W, Ding K, Mason WP; Trial Investigators. Short-course radiation plus temozolomide in elderly patients with glioblastoma[J]. N Engl J Med, 2017, 376:1027-1037. [11] Brandsma D, Stalpers L, Taal W, Sminia P, van den Bent MJ. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas[J]. Lancet Oncol, 2008, 9:453-461. [12] Brandes AA, Tosoni A, Spagnolli F, Frezza G, Leonardi M, Calbucci F, Franceschi E. Disease progression or pseudoprogression after concomitant radiochemotherapy treatment:pitfalls in neurooncology[J]. Neuro Oncol, 2008, 10:361-367. [13] Gahramanov S, Varallyay C, Tyson RM, Lacy C, Fu R, Netto JP, Nasseri M, White T, Woltjer RL, Gultekin SH, Neuwelt EA. Diagnosis of pseudoprogression using MRI perfusion in patients with glioblastoma multiforme may predict improved survival[J]. CNS Oncol, 2014, 3:389-400. [14] Brandes AA, Franceschi E, Tosoni A, Blatt V, Pession A, Tallini G, Bertorelle R, Bartolini S, Calbucci F, Andreoli A, Frezza G, Leonardi M, Spagnolli F, Ermani M. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients[J]. J Clin Oncol, 2008, 26:2192-2197. [15] Lin AL, White M, Miller-Thomas MM, Fulton RS, Tsien CI, Rich KM, Schmidt RE, Tran DD, Dahiya S. Molecular and histologic characteristics of pseudoprogression in diffuse gliomas[J]. J Neurooncol, 2016, 130:529-533. [16] Gahrmann R, van den Bent M, van der Holt B, Vernhout RM, Taal W, Vos M, de Groot JC, Beerepoot LV, Buter J, Flach ZH, Hanse M, Jasperse B, Smits M. Comparison of 2D (RANO) and volumetric methods for assessment of recurrent glioblastoma treated with bevacizumab:a report from the BELOB trial[J]. Neuro Oncol, 2017, 19:853-861. [17] Norden AD, Young GS, Setayesh K, Muzikansky A, Klufas R, Ross GL, Ciampa AS, Ebbeling LG, Levy B, Drappatz J, Kesari S, Wen PY. Bevacizumab for recurrent malignant gliomas:efficacy, toxicity, and patterns of recurrence[J]. Neurology, 2008, 70:779-787. [18] Clarke JL, Chang S. Pseudoprogression and pseudoresponse:challenges in brain tumor imaging[J]. Curr Neurol Neurosci Rep, 2009, 9:241-246. [19] Sorensen AG, Batchelor TT, Zhang WT, Chen PJ, Yeo P, Wang M, Jennings D, Wen PY, Lahdenranta J, Ancukiewicz M, di Tomaso E, Duda DG, Jain RK. A "vascular normalization index" as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients[J]. Cancer Res, 2009, 69:5296-5300. [20] Boxerman JL, Zhang Z, Safriel Y, Larvie M, Snyder BS, Jain R, Chi TL, Sorensen AG, Gilbert MR, Barboriak DP. Early post-bevacizumab progression on contrast-enhanced MRI as a prognostic marker for overall survival in recurrent glioblastoma:results from the ACRIN 6677/RTOG 0625 central reader study[J]. Neuro Oncol, 2013, 15:945-954. [21] Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C, Kalinka-Warzocha E, Savage KJ, Hernberg MM, Lebbé C, Charles J, Mihalcioiu C, Chiarion-Sileni V, Mauch C, Cognetti F, Arance A, Schmidt H, Schadendorf D, Gogas H, Lundgren-Eriksson L, Horak C, Sharkey B, Waxman IM, Atkinson V, Ascierto PA. Nivolumab in previously untreated melanoma without BRAF mutation[J]. N Engl J Med, 2015, 372:320-330. [22] Antonios JP, Soto H, Everson RG, Moughon D, Orpilla JR, Shin NP, Sedighim S, Treger J, Odesa S, Tucker A, Yong WH, Li G, Cloughesy TF, Liau LM, Prins RM. Immunosuppressive tumor infiltrating myeloid cells mediate adaptive immune resistance via a PD-1/PD-L1 mechanism in glioblastoma[J]. Neuro Oncol, 2017, 19:796-807. [23] Qin L, Li X, Stroiney A, Qu J, Helgager J, Reardon DA, Young GS. Advanced MRI assessment to predict benefit of anti programmed cell death 1 protein immunotherapy response in patients with recurrent glioblastoma[J]. Neuroradiology, 2017, 59:135-145. [24] Ranjan S, Quezado M, Garren N, Boris L, Siegel C, Lopes Abath Neto O, Theeler BJ, Park DM, Noluom E, Zaghloul KA, Gilbert MR, Wu J. Clinical decision making in the era of immunotherapy for high grade-glioma:report of four cases[J]. BMC Cancer, 2018, 18:239. [25] Preusser M, Lim M, Hafler DA, Reardon DA, Sampson JH. Prospects of immune checkpoint modulators in the treatment of glioblastoma[J]. Nat Rev Neurol, 2015, 11:504-514. [26] Nishino M, Giobbie-Hurder A, Gargano M, Suda M, Ramaiya NH, Hodi FS. Developing a common language for tumor response to immunotherapy:immune-related response criteria using unidimensional measurements[J]. Clin Cancer Res, 2013, 19:3936-3943. [27] Chang SM, Wen PY, Vogelbaum MA, Macdonald DR, van den Bent MJ. Response assessment in neuro-oncology (RANO):more than imaging criteria for malignant glioma[J]. Neurooncol Pract, 2015, 2:205-209. [28] Chinot OL, Macdonald DR, Abrey LE, Zahlmann G, Kerloë guen Y, Cloughesy TF. Response assessment criteria for glioblastoma:practical adaptation and implementation in clinical trials of antiangiogenic therapy[J]. Curr Neurol Neurosci Rep, 2013, 13:347. [29] Huang RY, Rahman R, Ballman KV, Felten SJ, Anderson SK, Ellingson BM, Nayak L, Lee EQ, Abrey LE, Galanis E, Reardon DA, Pope WB. The impact of T2/FLAIR evaluation per RANO criteria on response assessment of recurrent glioblastoma patients treated with Bevacizumab[J]. Clin Cancer Res, 2016, 22:575-581. [30] Hattingen E, Jurcoane A, Daneshvar K, Pilatus U, Mittelbronn M, Steinbach JP, Bähr O. Quantitative T2 mapping of recurrent glioblastoma under bevacizumab improves monitoring for non-enhancing tumor progression and predicts overall survival[J]. Neuro Oncol, 2013, 15:1395-1404. [31] Claus EB, Walsh KM, Wiencke JK, Molinaro AM, Wiemels JL, Schildkraut JM, Bondy ML, Berger M, Jenkins R, Wrensch M. Survival and low-grade glioma:the emergence of genetic information[J]. Neurosurg Focus, 2015, 38:E6. [32] Qian Z, Li Y, Fan X, Zhang C, Wang Y, Jiang T, Liu X. Molecular and clinical characterization of IDH associated immune signature in lower-grade gliomas[J]. Oncoimmunology, 2018, 7:E1434466. [33] Carceller F, Mandeville H, Mackinnon AD, Saran F. Facing pseudoprogression after radiotherapy in low grade gliomas[J]. Trans Cancer Res, 2017, 6 Supple 2:254-258. [34] Eisele SC, Wen PY, Lee EQ. Assessment of brain tumor response:RANO and its offspring[J]. Curr Treat Options Oncol, 2016, 17:35. [35] Avila EK, Chamberlain M, Schiff D, Reijneveld JC, Armstrong TS, Ruda R, Wen PY, Weller M, Koekkoek JA, Mittal S, Arakawa Y, Choucair A, Gonzalez-Martinez J, MacDonald DR, Nishikawa R, Shah A, Vecht CJ, Warren P, van den Bent MJ, DeAngelis LM. Seizure control as a new metric in assessing efficacy of tumor treatment in low-grade glioma trials[J]. Neuro Oncol, 2017, 19:12-21. [36] Sundar R, Cho BC, Brahmer JR, Soo RA. Nivolumab in NSCLC:latest evidence and clinical potential[J]. Ther Adv Med Oncol, 2015, 7:85-96. [37] Okada H, Weller M, Huang R, Finocchiaro G, Gilbert MR, Wick W, Ellingson BM, Hashimoto N, Pollack IF, Brandes AA, Franceschi E, Herold-Mende C, Nayak L, Panigrahy A, Pope WB, Prins R, Sampson JH, Wen PY, Reardon DA. Immunotherapy response assessment in neuro-oncology:a report of the RANO working group[J]. Lancet Oncol, 2015, 16:E534-542. [38] Armstrong TS, Vera-Bolanos E, Gning I, Acquaye A, Gilbert MR, Cleeland C, Mendoza T. The impact of symptom interference using the MD Anderson symptom inventory-brain tumor module (MDASI-BT) on prediction of recurrence in primary brain tumor patients[J]. Cancer, 2011, 117:3222-3228. [39] Nayak L, DeAngelis LM, Brandes AA, Peereboom DM, Galanis E, Lin NU, Soffietti R, Macdonald DR, Chamberlain M, Perry J, Jaeckle K, Mehta M, Stupp R, Muzikansky A, Pentsova E, Cloughesy T, Iwamoto FM, Tonn JC, Vogelbaum MA, Wen PY, van den Bent MJ, Reardon DA. The neurologic assessment in Neuro-Oncology (NANO) scale:a tool to assess neurologic function for integration into the response assessment in neuro-oncology (RANO) criteria[J]. Neuro Oncol, 2017, 19:625-635. [40] Alexander BM, Brown PD, Ahluwalia MS, Aoyama H, Baumert BG, Chang SM, Gaspar LE, Kalkanis SN, Macdonald DR, Mehta MP, Soffietti R, Suh JH, van den Bent MJ, Vogelbaum MA, Wefel JS, Lee EQ, Wen PY; Response Assessment in Neuro-Oncology (RANO) group. Clinical trial design for local therapies for brain metastases:a guideline by the response assessment in neuro-oncology brain metastases working group[J]. Lancet Oncol, 2018, 19:E33-42. [41] Lamborn KR, Yung WK, Chang SM, Wen PY, Cloughesy TF, DeAngelis LM, Robins HI, Lieberman FS, Fine HA, Fink KL, Junck L, Abrey L, Gilbert MR, Mehta M, Kuhn JG, Aldape KD, Hibberts J, Peterson PM, Prados MD; North American Brain Tumor Consortium. Progression-free survival:an important end point in evaluating therapy for recurrent high-grade gliomas[J]. Neuro Oncol, 2008, 10:162-170. [42] Han K, Ren M, Wick W, Abrey L, Das A, Jin J, Reardon DA. Progression-free survival as a surrogate endpoint for overall survival in glioblastoma:a literature-based Meta-analysis from 91 trials[J]. Neuro Oncol, 2014, 16:696-706. [43] Khan MN, Sharma AM, Pitz M, Loewen SK, Quon H, Poulin A, Essig M. High-grade glioma management and response assessment:recent advances and current challenges[J]. Curr Oncol, 2016, 23:E383-391. |