[1] Clarke J, Penas C, Pastori C, Komotar RJ, Bregy A, Shah AH, Wahlestedt C, Ayad NG. Epigenetic pathways and glioblastoma treatment[J]. Epigenetics, 2013, 8:785-795.
[2] Brandes AA, Tosoni A, Spagnolli F, Frezza G, Leonardi M, Calbucci F, Franceschi E. Disease progression or pseudoprogression after concomitant radiochemotherapy treatment:pitfalls in neurooncology[J]. Neuro Oncol, 2008, 10:361-367.
[3] Giusti I, Di Francesco M, Dolo V. Extracellular vesicles in glioblastoma:role in biological processes and in therapeutic applications[J]. Curr Cancer Drug Targets, 2017, 17:221-235.
[4] Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release[J]. Cell Mol Life Sci, 2018, 75:193-208.
[5] Xu R, Greening DW, Zhu HJ, Takahashi N, Simpson RJ. Extracellular vesicle isolation and characterization:toward clinical application[J]. J Clin Invest, 2016, 126:1152-1162.
[6] D'Asti E, Garnier D, Lee TH, Montermini L, Meehan B, Rak J. Oncogenic extracellular vesicles in brain tumor progression[J]. Front Physiol, 2012, 3:294.
[7] Whiteside TL. Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes)[J]. Biochem Soc Trans, 2013, 41:245-251.
[8] Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, García-Santos G, Ghajar C, Nitadori-Hoshino A, Hoffman C, Badal K, Garcia BA, Callahan MK, Yuan J, Martins VR, Skog J, Kaplan RN, Brady MS, Wolchok JD, Chapman PB, Kang Y, Bromberg J, Lyden D. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET[J]. Nat Med, 2012, 18:883-891.
[9] Greening DW, Xu R, Ji H, Tauro BJ, Simpson RJ. A protocol for exosome isolation and characterization:evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods J. Methods Mol Biol, 2015, 1295:179-209.
[10] Li X, Corbett AL, Taatizadeh E, Tasnim N, Little JP, Garnis C, Daugaard M, Guns E, Hoorfar M, Li IT. Challenges and opportunities in exosome research:perspectives from biology, engineering, and cancer therapy[J]. APL Bioeng, 2019, 3:ID011503.
[11] Szopa W, Burley TA, Kramer-Marek G, Kaspera W. Diagnostic and therapeutic biomarkers in glioblastoma:current status and future perspectives[J]. Biomed Res Int, 2017:ID8013575.
[12] Brandes AA, Tosoni A, Spagnolli F, Frezza G, Leonardi M, Calbucci F, Franceschi E. Disease pseudoprogression after treatment:pitfalls in neurooncology[J]. Neuro Oncol, 2008, 10:361-367.
[13] Stuplich M, Hadizadeh DR, Kuchelmeister K, Scorzin J, Filss C, Langen KJ, Schäfer N, Mack F, Schüller H, Simon M, Glas M, Pietsch T, Urbach H, Herrlinger U. Late and prolonged pseudoprogression in glioblastoma after treatment with lomustine and temozolomide[J]. J Clin Oncol, 2012, 30:E180-183.
[14] Garcia-Romero N, Carrion-Navarro J, Esteban-Rubio S, Lázaro-M, Alonso MM, Guzmán-De-Villoria J, Mendivil AO, García-Duque S, Escobedo-Lucea C, Prat-Acín R, Belda-Iniesta C, Ayuso-Sacido A. DNA sequences within glioma-derived extracellular vesicles can cross the intact blood-brain barrier and be detected in peripheral blood of patients[J]. Oncotarget, 2017, 8:1416-1428.
[15] Vaidya M, Bacchus M, Sugaya K. Differential sequences of exosomal NANOG DNA as a potential diagnostic cancer marker[J]. PLoS One, 2018, 13:E0197782.
[16] Choi D, Montermini L, Kim DK, Meehan B, Roth FP, Rak J. The impact of oncogenic EGFRv Ⅲ on the proteome of extracellular vesicles released from glioblastoma cells[J]. Mol Cell proteomics, 2018, 17:1948-1964.
[17] Strik HM, Weller M, Frank B, Hermisson M, Deininger MH, Dichgans J, Meyermann R. Heat shock protein expression in human gliomas[J]. Anticancer Res, 2000, 20:4457-4462.
[18] Shen G, Liang S, Xu Z, Zhou L, Xiao S, Xia X, Li R, Liao Y, You C, Wei Y. Dounregulated expression of HSP27 in human low-grade glioma tissues discovered by a quantitative proteomic analysis[J]. Proteome Sci, 2010, 8:17.
[19] Khalil AA, Kabapy NF, Deraz SF, Smith C. Heat shock proteins in oncology:diagnostic biomarkers or therapeutic targets[J]?Biochim Biophys Acta, 2011, 1816:89-104.
[20] Caruso Bavisotto C, Graziano F, Rappa F, Marino Gammazza A, Logozzi M, Fais S, Maugeri R, Bucchieri F, Conway de Macario E, Macario AJL, Cappello F, Iacopino DG, Campanella C. Exosomal chaperones and miRNAs in gliomagenesis:state-of-art and theranostics perspectives[J]. Int J Mol Sci, 2018, 19:E2626.
[21] Yang JK, Song J, Huo HR, Zhao YL, Zhang GY, Zhao ZM, Sun GZ, Jiao BH. DNM3, p65 and p53 from exosomes represent potential clinical diagnosis markers for glioblastoma multiforme[J]. Ther Adv Med Oncol, 2017, 9:741-754.
[22] Mallawaaratchy DM, Hallal S, Russell B, Ly L, Ebrahimkhani S, Wei H, Christopherson RI, Buckland ME, Kaufman KL. Comprehensive proteome profiling of glioblastoma-derived extracellular vesicles identifies markers for more aggressive disease[J]. J Neurooncol, 2017, 131:233-244.
[23] Huang K, Fang C, Yi K, Liu X, Qi H, Tan Y, Zhou J, Li Y, Liu M, Zhang Y, Yang J, Zhang J, Li M, Kang C. The role of PTRF/Cavin1 as a biomarker in both glioma and serum exosomes[J]. Theranostics, 2018, 8:1540-1557.
[24] Nie JH, Li H, Wu ML, Lin XM, Xiong L, Liu J. Differential exosomic proteomic patterns and their influence in resveratrol sensitivities of glioblastoma cells[J]. Int J Mol Sci, 2019, 20:E191.
[25] Ameres SL, Zamore PD. Diversifying microRNA sequence and function[J]. Nat Rev Mol Cell Biol, 2013, 14:475-488.
[26] Li L, Li C, Wang S, Wang Z, Jiang J, Wang W, Li X, Chen J, Liu K, Li C, Zhu G. Exosomes derived from hypoxic oral squamous cell carcinoma cells deliver miR-21 to normoxic cells to elicit a prometastatic phenotype[J]. Cancer Res, 2016, 76:1770-1780.
[27] Markopoulos GS, Roupakia E, Tokamani M, Chavdoula E, Hatziapostolou M, Polytarchou C, Marcu KB, Papavassiliou AG, Sandaltzopoulos R, Kolettas E. A step-by-step microRNA guide to cancer development and metastasis[J]. Cell Oncol (Dordr), 2017, 40:303-339.
[28] Taucher V, Mangge H, Haybaeck J. Non-coding RNAs in pancreatic cancer:challenges and opportunities for clinical application[J]. Cell Oncol (Dordr), 2016, 39:295-318.
[29] Ferraro A. Altered primary chromatin structures and their implications in cancer development[J]. Cell Oncol (Dordr), 2016, 39:195-210.
[30] Xiao G, Cheng CC, Chiang YS, Cheng WT, Liu IH, Wu SC. Exosomal miR-10a derived from amniotic fluid stem cells preserves ovarian follicles after chemotherapy[J]. Sci Rep, 2016, 6:23120.
[31] Dong L, Li Y, Han C, Wang X, She L, Zhang H. miRNA microarray reveals specific expression in the peripheral blood of glioblastoma patients[J]. Int J Oncol, 2014, 45:746-756.
[32] Manterola L, Guruceaga E, Gállego Pérez-Larraya J, González-Huarriz M, Jauregui P, Tejada S, Diez-Valle R, Segura V, Samprón N, Barrena C, Ruiz I, Agirre A, Ayuso A, Rodríguez J, González A, Xipell E, Matheu A, López de Munain A, Tuñón T, Zazpe I, García-Foncillas J, Paris S, Delattre JY, Alonso MM. A small noncoding RNA signature found in exosomes of GBM patient serum as a diagnostic tool[J]. Neuro Oncol, 2014, 16:520-527.
[33] Yerukala Sathipati S, Huang HL, Ho SY. Estimating survival time of patients with glioblastoma multiforme and characterization of the identified microRNA signatures[J]. BMC Genomics, 2016, 17:1022.
[34] Lan F, Qing Q, Pan Q, Hu M, Yu H, Yue X. Serum exosomal miR-301a as a potential diagnostic and prognostic biomarker for human glioma[J]. Cell Oncol (Dordr), 2017, 41:25-33.
[35] Cai Q, Zhu A, Gong L. Exosomes of glioma cells deliver miR-148a to promote proliferation and metastasis of glioblastoma via targeting CADM1[J]. Bull Cancer, 2018, 105:643-651.
[36] Akers JC, Ramakrishnan V, Kim R, Phillips S, Kaimal V, Mao Y, Hua W, Yang I, Fu CC, Nolan J, Nakano I, Yang Y, Beaulieu M, Carter BS, Chen CC. miRNA contents of cerebrospinal fluid extracellular vesicles in glioblastoma patients[J]. J Neurooncol, 2015, 123:205-216.
[37] Qu K, Lin T, Pang Q, Liu T, Wang Z, Tai M, Meng F, Zhang J, Wan Y, Mao P, Dong X, Liu C, Niu W, Dong S. Extracellular miRNA-21 as a novel biomarker in glioma:evidence from Meta-analysis, clinical validation and experimental investigations[J]. Oncotarget, 2016, 7:33994-34010.
[38] Zeng A, Wei Z, Yan W, Yin J, Huang X, Zhou X, Li R, Shen F, Wu W, Wang X, You Y. Exosomal transfer of miR-151a enhances chemosensitivity to temozolomide in drug-resistant glioblastoma[J]. Cancer Lett, 2018, 436:10-21.
[39] Pastori C, Kapranov P, Penas C, Peschansky V, Volmar CH, Sarkaria JN, Bregy A, Komotar R, St Laurent G, Ayad NG, Wahlestedt C. The Bromodomain protein BRD4 controls HOTAIR, a long noncoding RNA essential for glioblastoma proliferation[J]. Proc Natl Acad Sci USA, 2015, 112:8326-8331.
[40] Tan SK, Pastori C, Penas C, Komotar RJ, Ivan ME, Wahlestedt C, Ayad NG. Serum long noncoding RNA HOTAIR as a novel diagnostic and prognostic biomarker in glioblastoma multiforme[J]. Mol Cancer, 2018, 17:74.
[41] Coluccia D, Figuereido C, Isik S, Smith C, Rutka JT. Medulloblastoma:tumor biology and relevance to treatment and prognosis paradigm[J]. Curr Neurol Neurosci Rep, 2016, 16:43.
[42] Ciregia F, Urbani A, Palmisano G. Extracellular vesicles in brain tumors and neurodegenerative diseases[J]. Front Mol Neurosci, 2017, 10:276.
[43] Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL, Breakefield XO, Skog J. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences[J]. Nat Commun, 2011, 2:180.
[44] Lazarevich NL, Shavochkina DA, Fleishman DI, Kustova IF, Morozova OV, Chuchuev ES, Patyutko YI. Deregulation of hepatocyte nuclear factor 4(HNF4) as a marker of epithelial tumors progression[J]. Exp Oncol, 2010, 32:167-171.
[45] Ung TH, Madsen HJ, Hellwinkel JE, Lencioni AM, Graner MW. Exosome proteomics reveals transcriptional regulator proteins with potential to mediate downstream pathways[J]. Cancer Sci, 2014, 105:1384-1392.
[46] Steegmann-Olmedillas JL. The role of iron in tumour cell proliferation[J]. Clin Transl Oncol, 2011, 13:71-76.
[47] Bisaro B, Mandili G, Poli A, Piolatto A, Papa V, Novelli F, Cenacchi G, Forni M, Zanini C. Proteomic analysis of extracellular vesicles from medullospheres reveals a role for iron in the cancer progression of medulloblastoma[J]. Mol Cell Ther, 2015, 3:8.
[48] Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance[J]. J Cell Sci, 2012, 125:5591-5596.
[49] Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis[J]. Nat Med, 2013, 19:1423-1437.
[50] Squadrito ML, Baer C, Burdet F, Maderna C, Gilfillan GD, Lyle R, Ibberson M, De Palma M. Endogenous RNAs modulate microRNA sorting to exosomes and transfer to acceptor cells[J]. Cell Rep, 2014, 8:1432-1446.
[51] Neviani P, Fabbri M. Exosomic microRNAs in the tumor microenvironment[J]. Front Med (Lausanne), 2015, 2:47.
[52] Schiera G, Di Liegro CM, Di Liegro I. Molecular determinants of malignant brain cancers:from intracellular alterations to invasion mediated by extracellular vesicles[J]. Int J Mol Sci, 2017, 18:E2774.
[53] Iser IC, Pereira MB, Lenz G, Wink MR. The epithelial-to-mesenchymal transition-like process in glioblastoma:an updated systematic review and in silico investigation[J]. Med Res Rev, 2017, 37:271-313.
[54] Rajesh Y, Biswas A, Mandal M. Glioma progression through the prism of heat shock protein mediated extracellular matrix remodeling and epithelial to mesenchymal transition[J]. Exp Cell Res, 2017, 359:299-311.
[55] Giusti I, Delle Monache S, Di Francesco M, Sanità P, Ascenzo S, Gravina GL, Festuccia C, Dolo V. From glioblastoma to endothelial cells through extracellular vesicles:messages for angiogenesis[J]. Tumour Biol, 2016, 37:12743-12753.
[56] Oushy S, Hellwinkel JE, Wang M, Nguyen GJ, Gunaydin D, Harland TA, Anchordoquy TJ, Graner MW. Glioblastoma multiforme-derived extracellular vesicles drive normal astrocytes towards a tumour-enhancing phenotype[J]. Philos Trans R Soc Lond B Biol Sci, 2018, 373(1737).
[57] Hallal S, Mallawaaratchy DM, Wei H, Ebrahimkhani S, Stringer BW, Day BW, Boyd AW, Guillemin GJ, Buckland ME, Kaufman KL. Extracellular vesicles released by glioblastoma cells stimulate normal astrocytes to acquire a tumor:supportive phenotype via p53 and MYC signaling pathways[J]. Mol Neurobiol, 2019, 56:4566-4581.
[58] Wu A, Wei J, Kong LY, Wang Y, Priebe W, Qiao W, Sawaya R, Heimberger AB. Glioma cancer stem cells induce immunosuppressive macrophages/microglia[[J]. Neuro Oncol, 2010, 12:1113-1125.
[59] Graner MW, Alzate O, Dechkovskaia AM, Keene JD, Sampson JH, Mitchell DA, Bigner DD. Proteomic and immunologic analyses of brain tumor exosomes[J]. FASEB J, 2009, 23:1541-1557.
[60] Horlad H, Ma C, Yano H, Pan C, Ohnishi K, Fujiwara Y, Endo S, Kikukawa Y, Okuno Y, Matsuoka M, Takeya M, Komohara Y. An IL-27/Stat3 axis induces expression of programmed cell death 1 ligands (PD-L1/2) on infiltrating macrophages in lymphoma[J]. Cancer Sci, 2016, 107:1696-1704.
[61] Stefano L, Racchetti G, Bianco F, Passini N, Gupta RS, Panina Bordignon P, Meldolesi J. The surface-exposed chaperone, Hsp60, is an agonist of the microglial TREM2 receptor[J]. J Neurochem, 2009, 110:284-294.
[62] Carmeliet P, Jain RK. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases[J]. Nat Rev Drug Discov, 2011, 10:417-427.
[63] Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT. Angiogenesis in brain tumours[J]. Nat Rev Neurosci, 2007, 8:610-622.
[64] Svensson KJ, Belting M. Role of extracellular membrane vesicles in intercellular communication of the tumour microenvironment[J]. Biochem Soc Trans, 2013, 41:273-276.
[65] Kucharzewska P, Christianson HC, Welch JE, Svensson KJ, Fredlund E, Ringnér M, Mörgelin M, Bourseau-Guilmain E, Bengzon J, Belting M. Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development[J]. Proc Natl Acad Sci USA, 2013, 110:7312-7317.
[66] Xitong D, Xiaorong Z. Targeted therapeutic delivery using engineered exosomes and its applications in cardiovascular diseases[J]. Gene, 2016, 575:377-384.
[67] Salarpour S, Forootanfar H, Pournamdari M, Ahmadi-Zeidabadi M, Esmaeeli M, Pardakhty A. Paclitaxel incorporated exosomes derived from glioblastoma cells:comparative study of two loading techniques[J]. Daru, 2019.[Epub ahead of print].
[68] Pullan JE, Confeld MI, Osborn JK, Kim J, Sarkar K, Mallik S. Exosomes as drug carriers for cancer therapy[J]. Mol Pharm, 2019, 16:1789-1798.
[69] Wang B, Wu ZH, Lou PY, Chai C, Han SY, Ning JF, Li M. Human bone marrow-derived mesenchymal stem cell-secreted exosomes overexpressing microRNA-34a ameliorate glioblastoma development via down-regulating MYCN[J]. Cell Oncol (Dordr), 2019.[Epub ahead of print].
[70] Li F, Li H, Jin X, Zhang Y, Kang X, Zhang Z, Xu M, Qian Z, Ma Z, Gao X, Zhao L, Wu S, Sun H. Adipose-specific knockdown of Sirt1 results in obesity and insulin resistance by promoting exosomes release[J]. Cell Cycle, 2019, 18:2067-2082.
[71] Maacha S, Bhat AA, Jimenez L, Raza A, Haris M, Uddin S, Grivel JC. Extracellular vesicles-mediated intercellular communication:roles in the tumor microenvironment and anti-cancer drug resistance[J]. Mol Cancer, 2019, 18:55.
[72] Domenis R, Cesselli D, Toffoletto B, Bourkoula E, Caponnetto F, Manini I, Beltrami AP, Ius T, Skrap M, Di Loreto C, Gri G. Systemic T cells immunosuppression of glioma stem cell-derived exosomes is mediated by monocytic myeloid-derived suppressor cells[J]. PLoS One, 2017, 12:E0169932.
[73] Abels ER, Broekman MLD, Breakefield XO, Maas SLN. Glioma EVs contribute to immune privilege in the brain[J]. Trends Cancer, 2019, 5:393-396. |