[1] Malik R, Dichgans M. Challenges and opportunities in stroke genetics[J]. Cardiovasc Res, 2018, 114:1226-1240.
[2] Goldberg J, Raabe A, Bervini D. Natural history of brain arteriovenous malformations:systematic review[J]. J Neurosurg Sci, 2018, 62:437-443.
[3] Samuel N, Radovanovic I. Genetic basis of intracranial aneurysm formation and rupture:clinical implications in the postgenomic era[J]. Neurosurg Focus, 2019, 47:E10.
[4] Yamada C, Hagiwara S, Ohbuchi H, Kasuya H. Risk of intracranial hemorrhage and short-term outcome in patients with minor head injury[J]. World Neurosurg, 2020, 141:e851-857.
[5] Macdonald RL. management of intracranial hemorrhage in the anticoagulated patient[J]. Neurosurg Clin N Am, 2018, 29:605-613.
[6] Karschnia P, Nishimura S, Louvi A. Cerebrovascular disorders associated with genetic lesions[J]. Cell Mol Life Sci, 2019, 76:283-300.
[7] Bai Q, Sheng Z, Liu Y, Zhang R, Yong VW, Xue M. Intracerebral haemorrhage:from clinical settings to animal models[J]. Stroke Vasc Neurol, 2020, 5:388-395.
[8] Ben-Zvi A, Lacoste B, Kur E, Andreone BJ, Mayshar Y, Yan H, Gu C. Mfsd2a is critical for the formation and function of the blood-brain barrier[J]. Nature, 2014, 509:507-511.
[9] van Leeuwen LM, Evans RJ, Jim KK, Verboom T, Fang X, Bojarczuk A, Malicki J, Johnston SA, van der Sar AM. A transgenic zebrafish model for the in vivo study of the blood and choroid plexus brain barriers using claudin 5[J]. Biol Open, 2018, 7:bio030494.
[10] Quiñonez-Silvero C, Hübner K, Herzog W. Development of the brain vasculature and the blood-brain barrier in zebrafish[J]. Dev Biol, 2020, 457:181-190.
[11] O'Brown NM, Megason SG, Gu C. Suppression of transcytosis regulates zebrafish blood-brain barrier function[J]. Elife, 2019, 8:e47326.
[12] Langen UH, Ayloo S, Gu C. Development and cell biology of the blood-brain barrier[J]. Annu Rev Cell Dev Biol, 2019, 35:591-613.
[13] Segarra M, Aburto MR, Acker-Palmer A. Blood-brain barrier dynamics to maintain brain homeostasis[J]. Trends Neurosci, 2021.[Epub ahead of print]
[14] Yang Z, Lin P, Chen B, Zhang X, Xiao W, Wu S, Huang C, Feng D, Zhang W, Zhang J. Autophagy alleviates hypoxia-induced blood-brain barrier injury via regulation of CLDN5(claudin 5)[J]. Autophagy, 2020.[Epub ahead of print]
[15] Zhao Z, Nelson AR, Betsholtz C, Zlokovic BV. Establishment and dysfunction of the blood-brain barrier[J]. Cell, 2015, 163:1064-1078.
[16] Ando K, Wang W, Peng D, Chiba A, Lagendijk AK, Barske L, Crump JG, Stainier DYR, Lendahl U, Koltowska K, Hogan BM, Fukuhara S, Mochizuki N, Betsholtz C. Peri-arterial specification of vascular mural cells from naive mesenchyme requires Notch signaling[J]. Development, 2019, 146:dev165589.
[17] Matsuoka RL, Stainier DYR. Recent insights into vascular development from studies in zebrafish[J]. Curr Opin Hematol, 2018, 25:204-211.
[18] Bahrami N, Childs SJ. Pericyte biology in zebrafish[J]. Adv Exp Med Biol, 2018, 1109:33-51.
[19] Alvarez JI, Dodelet-Devillers A, Kebir H, Ifergan I, Fabre PJ, Terouz S, Sabbagh M, Wosik K, Bourbonnière L, Bernard M, van Horssen J, de Vries HE, Charron F, Prat A. The Hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence[J]. Science, 2011, 334:1727-1731.
[20] Mader S, Brimberg L. Aquaporin-4 water channel in the brain and its implication for health and disease[J]. Cells, 2019, 8:90.
[21] Gleiser C, Wagner A, Fallier-Becker P, Wolburg H, Hirt B, Mack AF. Aquaporin-4 in astroglial cells in the CNS and supporting cells of sensory organs-a comparative perspective[J]. Int J Mol Sci, 2016, 17:1411.
[22] Segarra M, Aburto MR, Cop F, Llaó-Cid C, Härtl R, Damm M, Bethani I, Parrilla M, Husainie D, Schänzer A, Schlierbach H, Acker T, Mohr L, Torres-Masjoan L, Ritter M, Acker-Palmer A. Endothelial Dab1 signaling orchestrates neuro-glia-vessel communication in the central nervous system[J]. Science, 2018, 361:eaao2861.
[23] Hübner K, Cabochette P, Diéguez-Hurtado R, Wiesner C, Wakayama Y, Grassme KS, Hubert M, Guenther S, Belting HG, Affolter M, Adams RH, Vanhollebeke B, Herzog W. Wnt/β-catenin signaling regulates VE-cadherin-mediated anastomosis of brain capillaries by counteracting S1pr1 signaling[J]. Nat Commun, 2018, 9:4860.
[24] Adler D, Linden JR, Shetty SV, Ma Y, Bokori-Brown M, Titball RW, Vartanian T. Clostridium perfringens Epsilon Toxin Compromises the Blood-Brain Barrier in a Humanized Zebrafish Model[J]. iScience, 2019, 15:39-54.
[25] Yu X, Li YV. Zebrafish (Danio rerio) developed as an alternative animal model for focal ischemic stroke[J]. Acta Neurochir Suppl, 2016, 121:115-119.
[26] Crilly S, Njegic A, Laurie SE, Fotiou E, Hudson G, Barrington J, Webb K, Young HL, Badrock AP, Hurlstone A, Rivers-Auty J, Parry-Jones AR, Allan SM, Kasher PR. Using zebrafish larval models to study brain injury, locomotor and neuroinflammatory outcomes following intracerebral haemorrhage[J]. F1000Res, 2018, 7:1617.
[27] Crilly S, Njegic A, Parry-Jones AR, Allan SM, Kasher PR. Using zebrafish larvae to study the pathological consequences of hemorrhagic stroke[J]. J Vis Exp, 2019, 148.
[28] Bahrami N, Childs SJ. Development of vascular regulation in the zebrafish embryo[J]. Development, 2020, 147:dev183061.
[29] Umans RA, Henson HE, Mu F, Parupalli C, Ju B, Peters JL, Lanham KA, Plavicki JS, Taylor MR. CNS angiogenesis and barriergenesis occur simultaneously[J]. Dev Biol, 2017, 425:101-108.
[30] Zhang T, Xu Z, Wen L, Lei D, Li S, Wang J, Huang J, Wang N, Durkan C, Liao X, Wang G. Cadmium-induced dysfunction of the blood-brain barrier depends on ROS-mediated inhibition of PTPase activity in zebrafish[J]. J Hazard Mater, 2021, 412: 125198.
[31] Eisa-Beygi S, Macdonald RL, Wen XY. Regulatory pathways affecting vascular stabilization via VE-cadherin dynamics:insights from zebrafish (Danio rerio)[J]. J Cereb Blood Flow Metab, 2014, 34:1430-1433.
[32] Chauhan G, Debette S. Genetic risk factors for ischemic and hemorrhagic stroke[J]. Curr Cardiol Rep, 2016, 18:124.
[33] Abdelrahman HA, Al-Shamsi A, John A, Hertecant J, Lootah A, Ali BR, Al-Gazali L. A recessive truncating variant in thrombospondin-1 domain containing protein 1 gene THSD1 is the underlying cause of nonimmune hydrops fetalis, congenital cardiac defects, and haemangiomas in four patients from a consanguineous family[J]. Am J Med Genet A, 2018, 176:1996-2003.
[34] Santiago-Sim T, Fang X, Hennessy ML, Nalbach SV, DePalma SR, Lee MS, Greenway SC, McDonough B, Hergenroeder GW, Patek KJ, Colosimo SM, Qualmann KJ, Hagan JP, Milewicz DM, MacRae CA, Dymecki SM, Seidman CE, Seidman JG, Kim DH. THSD1(Thrombospondin Type 1 Domain Containing Protein 1) mutation in the pathogenesis of intracranial aneurysm and subarachnoid hemorrhage[J]. Stroke, 2016, 47:3005-3013.
[35] Sauvigny T, Alawi M, Krause L, Renner S, Spohn M, Busch A, Kolbe V, Altmüller J, Löscher BS, Franke A, Brockmann C, Lieb W, Westphal M, Schmidt NO, Regelsberger J, Rosenberger G. Exome sequencing in 38 patients with intracranial aneurysms and subarachnoid hemorrhage[J]. J Neurol, 2020, 267:2533-2545.
[36] Zhou Q, Yang D, Ombrello AK, Zavialov AV, Toro C, Zavialov AV, Stone DL, Chae JJ, Rosenzweig SD, Bishop K, Barron KS, Kuehn HS, Hoffmann P, Negro A, Tsai WL, Cowen EW, Pei W, Milner JD, Silvin C, Heller T, Chin DT, Patronas NJ, Barber JS, Lee CC, Wood GM, Ling A, Kelly SJ, Kleiner DE, Mullikin JC, Ganson NJ, Kong HH, Hambleton S, Candotti F, Quezado MM, Calvo KR, Alao H, Barham BK, Jones A, Meschia JF, Worrall BB, Kasner SE, Rich SS, Goldbach-Mansky R, Abinun M, Chalom E, Gotte AC, Punaro M, Pascual V, Verbsky JW, Torgerson TR, Singer NG, Gershon TR, Ozen S, Karadag O, Fleisher TA, Remmers EF, Burgess SM, Moir SL, Gadina M, Sood R, Hershfield MS, Boehm M, Kastner DL, Aksentijevich I. Early-onset stroke and vasculopathy associated with mutations in ADA2[J]. N Engl J Med, 2014, 370:911-920.
[37] Wei S, Li Y, Polster SP, Weber CR, Awad IA, Shen L. Cerebral cavernous malformation proteins in barrier maintenance and regulation[J]. Int J Mol Sci, 2020, 21:675.
[38] Rödel CJ, Otten C, Donat S, Lourenço M, Fischer D, Kuropka B, Paolini A, Freund C, Abdelilah-Seyfried S. Blood flow suppresses vascular anomalies in a zebrafish model of cerebral cavernous malformations[J]. Circ Res, 2019, 125:e43-e54.
[39] Otten C, Knox J, Boulday G, Eymery M, Haniszewski M, Neuenschwander M, Radetzki S, Vogt I, Hähn K, De Luca C, Cardoso C, Hamad S, Igual Gil C, Roy P, Albiges-Rizo C, Faurobert E, von Kries JP, Campillos M, Tournier-Lasserve E, Derry WB, Abdelilah-Seyfried S. Systematic pharmacological screens uncover novel pathways involved in cerebral cavernous malformations[J]. EMBO Mol Med, 2018, 10:e9155. |