[1] Cordonnier C, Demchuk A, Ziai W, Anderson CS. Intracerebral haemorrhage:current approaches to acute management[J]. Lancet, 2018, 392:1257-1268.
[2] Wu S, Wu B, Liu M, Chen Z, Wang W, Anderson CS, Sandercock P, Wang Y, Huang Y, Cui L, Pu C, Jia J, Zhang T, Liu X, Zhang S, Xie P, Fan D, Ji X, Wong KL, Wang L; China Stroke Study Collaboration. Stroke in China:advances and challenges in epidemiology, prevention, and management[J]. Lancet Neurol, 2019, 18:394-405.
[3] Pinho J, Costa AS, Araújo JM, Amorim JM, Ferreira C.Intracerebral hemorrhage outcome:a comprehensive update[J].J Neurol Sci, 2019, 398:54-66.
[4] Gregório T, Pipa S, Cavaleiro P, Atanásio G, Albuquerque I, Castro Chaves P, Azevedo L. Original intracerebral hemorrhage score for the prediction of short-term mortality in cerebral hemorrhage:systematic review and meta-analysis[J]. Crit Care Med, 2019, 47:857-864.
[5] Xue M, Yong VW. Neuroinflammation in intracerebral haemorrhage:immunotherapies with potential for translation[J]. Lancet Neurol, 2020, 19:1023-1032.
[6] Zhu H, Wang Z, Yu J, Yang X, He F, Liu Z, Che F, Chen X, Ren H, Hong M, Wang J. Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage[J]. Prog Neurobiol, 2019, 178:101610.
[7] Shao A, Zhu Z, Li L, Zhang S, Zhang J. Emerging therapeutic targets associated with the immune system in patients with intracerebral haemorrhage (ICH):from mechanisms to translation[J]. EBioMedicine, 2019, 45:615-623.
[8] Shao Z, Tu S, Shao A. Pathophysiological mechanisms and potential therapeutic targets in intracerebral hemorrhage[J]. Front Pharmacol, 2019, 10:1079.
[9] Wilkinson DA, Pandey AS, Thompson BG, Keep RF, Hua Y, Xi G. Injury mechanisms in acute intracerebral hemorrhage[J]. Neuropharmacology, 2018, 134(Pt B):240-248.
[10] Chaudhry SR, Hafez A, Rezai Jahromi B, Kinfe TM, Lamprecht A, Niemelä M, Muhammad S. Role of damage associated molecular pattern molecules (DAMPs) in aneurysmal subarachnoid hemorrhage (aSAH)[J]. Int J Mol Sci, 2018, 19:2035.
[11] Zhao X, Sun G, Zhang J, Strong R, Song W, Gonzales N, Grotta JC, Aronowski J. Hematoma resolution as a target for intracerebral hemorrhage treatment:role for peroxisome proliferator-activated receptor gamma in microglia/macrophages[J]. Ann Neurol, 2007, 61:352-362.
[12] Wagner KR, Sharp FR, Ardizzone TD, Lu A, Clark JF. Heme and iron metabolism:role in cerebral hemorrhage[J]. J Cereb Blood Flow Metab, 2003, 23:629-652.
[13] Bozza MT, Jeney V. Pro-inflammatory actions of heme and other hemoglobin-derived DAMPs[J]. Front Immunol, 2020, 11:1323.
[14] Figueiredo RT, Fernandez PL, Mourao-Sa DS, Porto BN, Dutra FF, Alves LS, Oliveira MF, Oliveira PL, Graça-Souza AV, Bozza MT. Characterization of heme as activator of Toll-like receptor 4[J]. J Biol Chem, 2007, 282:20221-20229.
[15] Lin S, Yin Q, Zhong Q, Lv FL, Zhou Y, Li JQ, Wang JZ, Su BY, Yang QW. Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage[J]. J Neuroinflammation, 2012, 9:46.
[16] Min H, Hong J, Cho IH, Jang YH, Lee H, Kim D, Yu SW, Lee S, Lee SJ. TLR2-induced astrocyte MMP9 activation compromises the blood brain barrier and exacerbates intracerebral hemorrhage in animal models[J]. Mol Brain, 2015, 8:23.
[17] Muhammad S, Chaudhry SR, Kahlert UD, Lehecka M, Korja M, Niemelä M, Hänggi D. Targeting high mobility group box 1 in subarachnoid hemorrhage:a systematic review[J]. Int J Mol Sci, 2020, 21:2709.
[18] Wang D, Liu K, Wake H, Teshigawara K, Mori S, Nishibori M. Anti-high mobility group box-1(HMGB1) antibody inhibits hemorrhage-induced brain injury and improved neurological deficits in rats[J]. Sci Rep, 2017, 7:46243.
[19] Zhou Y, Xiong KL, Lin S, Zhong Q, Lu FL, Liang H, Li JC, Wang JZ, Yang QW. Elevation of high-mobility group protein box-1 in serum correlates with severity of acute intracerebral hemorrhage[J]. Mediators Inflamm, 2010:ID142458.
[20] Lei C, Geng J, Zhong L. The association between plasma HMGB1 and sRAGE and clinical outcome in intracerebral hemorrhage[J]. J Neuroimmunol, 2020, 345:577266.
[21] Lei C, Lin S, Zhang C, Tao W, Dong W, Hao Z, Liu M, Wu B. High-mobility group box1 protein promotes neuroinflammation after intracerebral hemorrhage in rats[J]. Neuroscience, 2013, 228:190-199.
[22] Ohnishi M, Katsuki H, Fukutomi C, Takahashi M, Motomura M, Fukunaga M, Matsuoka Y, Isohama Y, Izumi Y, Kume T, Inoue A, Akaike A. HMGB1 inhibitor glycyrrhizin attenuates intracerebral hemorrhage-induced injury in rats[J]. Neuropharmacology, 2011, 61:975-980.
[23] Li D, Lei C, Zhang S, Zhang S, Liu M, Wu B. Blockade of high mobility group box-1 signaling via the receptor for advanced glycation end-products ameliorates inflammatory damage after acute intracerebral hemorrhage[J]. Neurosci Lett, 2015, 609:109-119.
[24] Ma XL, Li SY, Shang F. Effect of microRNA-129-5p targeting HMGB1-RAGE signaling pathway on revascularization in a collagenase-induced intracerebral hemorrhage rat model[J]. Biomed Pharmacother, 2017, 93:238-244.
[25] Lei C, Lin S, Zhang C, Tao W, Dong W, Hao Z, Liu M, Wu B. Effects of high-mobility group box1 on cerebral angiogenesis and neurogenesis after intracerebral hemorrhage[J]. Neuroscience, 2013, 229:12-19.
[26] Lei C, Wu B, Cao T, Zhang S, Liu M. Activation of the high-mobility group box 1 protein-receptor for advanced glycation end-products signaling pathway in rats during neurogenesis after intracerebral hemorrhage[J]. Stroke, 2015, 46:500-506.
[27] Lei C, Zhang S, Cao T, Tao W, Liu M, Wu B. HMGB1 may act via RAGE to promote angiogenesis in the later phase after intracerebral hemorrhage[J]. Neuroscience, 2015, 295:39-47.
[28] Senn R, Elkind MS, Montaner J, Christ-Crain M, Katan M. Potential role of blood biomarkers in the management of nontraumatic intracerebral hemorrhage[J]. Cerebrovasc Dis, 2014, 38:395-409.
[29] Brunkhorst R, Pfeilschifter W, Foerch C. Astroglial proteins as diagnostic markers of acute intracerebral hemorrhage-pathophysiological background and clinical findings[J]. Transl Stroke Res, 2010, 1:246-251.
[30] Cordeiro JL, Neves JD, Nicola F, Vizuete AF, Sanches EF, Gonçalves CA, Netto CA. Arundic acid (ONO-2506) attenuates neuroinflammation and prevents motor impairment in rats with intracerebral hemorrhage[J]. Cell Mol Neurobiol, 2020.[Epub ahead of print]
[31] Tanaka Y, Marumo T, Shibuta H, Omura T, Yoshida S. Serum S100B, brain edema, and hematoma formation in a rat model of collagenase-induced hemorrhagic stroke[J]. Brain Res Bull, 2009, 78:158-163.
[32] Hu YY, Dong XQ, Yu WH, Zhang ZY. Change in plasma S100B level after acute spontaneous basal ganglia hemorrhage[J]. Shock, 2010, 33:134-140.
[33] Delgado P, Alvarez Sabin J, Santamarina E, Molina CA, Quintana M, Rosell A, Montaner J. Plasma S100B level after acute spontaneous intracerebral hemorrhage[J]. Stroke, 2006, 37:2837-2839.
[34] Huang M, Dong XQ, Hu YY, Yu WH, Zhang ZY. High S100B levels in cerebrospinal fluid and peripheral blood of patients with acute basal ganglial hemorrhage are associated with poor outcome[J]. World J Emerg Med, 2010, 1:22-31.
[35] Zhou S, Bao J, Wang Y, Pan S. S100β as a biomarker for differential diagnosis of intracerebral hemorrhage and ischemic stroke[J]. Neurol Res, 2016, 38:327-332.
[36] James ML, Blessing R, Phillips-Bute BG, Bennett E, Laskowitz DT. S100B and brain natriuretic peptide predict functional neurological outcome after intracerebral haemorrhage[J]. Biomarkers, 2009, 14:388-394.
[37] Ferrete-Araujo AM, Rodríguez-Rodríguez A, Egea-Guerrero JJ, Vilches-Arenas Á, Godoy DA, Murillo-Cabezas F. Brain injury biomarker behavior in spontaneous intracerebral hemorrhage[J]. World Neurosurg, 2019, 132:e496-505.
[38] Cordeiro JL, Neves JD, Vizuete AF, Aristimunha D, Pedroso TA, Sanches EF, Gonçalves CA, Netto CA. Arundic acid (ONO-2506), an inhibitor of S100B protein synthesis, prevents neurological deficits and brain tissue damage following intracerebral hemorrhage in male wistar rats[J]. Neuroscience, 2020, 440:97-112.
[39] Zhu Y, Deng L, Tang H, Gao X, Wang Y, Guo K, Kong J, Yang C. Electroacupuncture improves neurobehavioral function and brain injury in rat model of intracerebral hemorrhage[J]. Brain Res Bull, 2017, 131:123-132.
[40] Li X, Huang X, Tang Y, Zhao F, Cao Y, Yin L, Li G. Assessing the pharmacological and therapeutic efficacy of traditional Chinese medicine liangxue tongyu prescription for intracerebral hemorrhagic stroke in neurological disease models[J]. Front Pharmacol, 2018, 9:1169.
[41] Lu Y, Zhang XS, Zhou XM, Gao YY, Chen CL, Liu JP, Ye ZN, Zhang ZH, Wu LY, Li W, Hang CH. Peroxiredoxin 1/2 protects brain against H2O2-induced apoptosis after subarachnoid hemorrhage[J]. FASEB J, 2019, 33:3051-3062.
[42] Nakaso K, Kitayama M, Mizuta E, Fukuda H, Ishii T, Nakashima K, Yamada K. Co-induction of heme oxygenase-1 and peroxiredoxin Ⅰ in astrocytes and microglia around hemorrhagic region in the rat brain[J]. Neurosci Lett, 2000, 293:49-52.
[43] Yang GQ, Huang JC, Yuan JJ, Zhang Q, Gong CX, Chen Q, Xie Q, Xie LX, Chen R, Qiu ZM, Zhou K, Xu R, Jiang GH, Xiong XY, Yang QW. Prdx1 reduces intracerebral hemorrhage-induced brain injury via targeting inflammation-and apoptosis-related mRNA stability[J]. Front Neurosci, 2020, 14:181.
[44] Wang S, Yu L, Sun G, Liu Y, Hu W, Liu Y, Peng T, Wang X, Cheng J, Sr A, Qin B, Lu H. Danhong injection protects hemorrhagic brain by increasing Peroxiredoxin 1 in aged rats[J]. Front Pharmacol, 2020, 11:346.
[45] Shichita T, Hasegawa E, Kimura A, Morita R, Sakaguchi R, Takada I, Sekiya T, Ooboshi H, Kitazono T, Yanagawa T, Ishii T, Takahashi H, Mori S, Nishibori M, Kuroda K, Akira S, Miyake K, Yoshimura A. Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain[J]. Nat Med, 2012, 18:911-917.
[46] Salzano S, Checconi P, Hanschmann EM, Lillig CH, Bowler LD, Chan P, Vaudry D, Mengozzi M, Coppo L, Sacre S, Atkuri KR, Sahaf B, Herzenberg LA, Herzenberg LA, Mullen L, Ghezzi P. Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal[J]. Proc Natl Acad Sci USA, 2014, 111:12157-12162.
[47] Liu DL, Zhao LX, Zhang S, Du JR. Peroxiredoxin 1-mediated activation of TLR4/NF-κB pathway contributes to neuroinflammatory injury in intracerebral hemorrhage[J]. Int Immunopharmacol, 2016, 41:82-89.
[48] Han L, Liu DL, Zeng QK, Shi MQ, Zhao LX, He Q, Kuang X, Du JR. The neuroprotective effects and probable mechanisms of ligustilide and its degradative products on intracerebral hemorrhage in mice[J]. Int Immunopharmacol, 2018, 63:43-57.
[49] Bian L, Zhang J, Wang M, Keep RF, Xi G, Hua Y. Intracerebral hemorrhage-induced brain injury in rats:the role of extracellular peroxiredoxin 2[J]. Transl Stroke Res, 2020, 11:288-295.
[50] Zhang J, Novakovic N, Hua Y, Keep RF, Xi G. Role of lipocalin-2 in extracellular peroxiredoxin 2-induced brain swelling, inflammation and neuronal death[J]. Exp Neurol, 2021, 335:113521.
[51] Shao A, Zhou Y, Yao Y, Zhang W, Zhang J, Deng Y. The role and therapeutic potential of heat shock proteins in haemorrhagic stroke[J]. J Cell Mol Med, 2019, 23:5846-5858.
[52] Manaenko A, Fathali N, Chen H, Suzuki H, Williams S, Zhang JH, Tang J. Heat shock protein 70 upregulation by geldanamycin reduces brain injury in a mouse model of intracerebral hemorrhage[J]. Neurochem Int, 2010, 57:844-850.
[53] Lv LJ, Li J, Qiao HB, Nie BJ, Lu P, Xue F, Zhang ZM. Overexpression of GRP75 inhibits inflammation in a rat model of intracerebral hemorrhage[J]. Mol Med Rep, 2017, 15:1368-1372.
[54] Li QQ, Li LJ, Wang XY, Sun YY, Wu J. Research progress in understanding the relationship between heme oxygenase-1 and intracerebral hemorrhage[J]. Front Neurol, 2018, 9:682.
[55] Wang Y, Song Y, Pang Y, Yu Z, Hua W, Gu Y, Qi J, Wu H. miR-183-5p alleviates early injury after intracerebral hemorrhage by inhibiting heme oxygenase-1 expression[J]. Aging (Albany NY), 2020, 12:12869-12895.
[56] Zhao Q, Qu R, Teng L, Yin C, Yuan Y. HO-1 protects the nerves of rats with cerebral hemorrhage by regulating the PI3K/AKT signaling pathway[J]. Neuropsychiatr Dis Treat, 2019, 15:1459-1468.
[57] Zhang Z, Song Y, Zhang Z, Li D, Zhu H, Liang R, Gu Y, Pang Y, Qi J, Wu H, Wang J. Distinct role of heme oxygenase-1 in early-and late-stage intracerebral hemorrhage in 12-month-old mice[J]. J Cereb Blood Flow Metab, 2017, 37:25-38.
[58] Franklin TC, Xu C, Duman RS. Depression and sterile inflammation:essential role of danger associated molecular patterns[J]. Brain Behav Immun, 2018, 72:2-13.
[59] Zhao H, Chen Y, Feng H. P2X7 receptor-associated programmed cell death in the pathophysiology of hemorrhagic stroke[J]. Curr Neuropharmacol, 2018, 16:1282-1295.
[60] Deng H, Zhang Y, Li GG, Yu HH, Bai S, Guo GY, Guo WL, Ma Y, Wang JH, Liu N, Pan C, Tang ZP. P2X7 receptor activation aggravates NADPH oxidase 2-induced oxidative stress after intracerebral hemorrhage[J]. Neural Regen Res, 2021, 16:1582-1591.
[61] Wen Z, Mei B, Li H, Dou Y, Tian X, Shen M, Chen G. P2X7 participates in intracerebral hemorrhage-induced secondary brain injury in rats via MAPKs signaling pathways[J]. Neurochem Res, 2017, 42:2372-2383.
[62] Zhao H, Qu J, Li Q, Cui M, Wang J, Zhang K, Liu X, Feng H, Chen Y. Taurine supplementation reduces neuroinflammation and protects against white matter injury after intracerebral hemorrhage in rats[J]. Amino Acids, 2018, 50:439-451.
[63] Cayrol C, Girard JP. Interleukin-33(IL-33):a nuclear cytokine from the IL-1 family[J]. Immunol Rev, 2018, 281:154-168.
[64] Gao Y, Ma L, Luo CL, Wang T, Zhang MY, Shen X, Meng HH, Ji MM, Wang ZF, Chen XP, Tao LY. IL-33 exerts neuroprotective effect in mice intracerebral hemorrhage model through suppressing inflammation/apoptotic/autophagic pathway[J]. Mol Neurobiol, 2017, 54:3879-3892.
[65] Chen Z, Xu N, Dai X, Zhao C, Wu X, Shankar S, Huang H, Wang Z. Interleukin-33 reduces neuronal damage and white matter injury via selective microglia M2 polarization after intracerebral hemorrhage in rats[J]. Brain Res Bull, 2019, 150:127-135. |