[1] Steiner T, Al-Shahi Salman R, Beer R, Christensen H, Cordonnier C, Csiba L, Forsting M, Harnof S, Klijn CJ, Krieger D, Mendelow AD, Molina C, Montaner J, Overgaard K, Petersson J, Roine RO, Schmutzhard E, Schwerdtfeger K, Stapf C, Tatlisumak T, Thomas BM, Toni D, Unterberg A, Wagner M; European Stroke Organisation. European Stroke Organisation (ESO) guidelines for the management of spontaneous intracerebral hemorrhage[J]. Int J Stroke, 2014, 9:840-855.
[2] Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, Bennett DA, Moran AE, Sacco RL, Anderson L, Truelsen T, O'Donnell M, Venketasubramanian N, Barker-Collo S, Lawes CM, Wang W, Shinohara Y, Witt E, Ezzati M, Naghavi M, Murray C; Global Burden of Diseases, Injuries, and Risk Factors Study 2010(GBD 2010) and the GBD Stroke Experts Group. Global and regional burden of stroke during 1990-2010:findings from the Global Burden of Disease Study 2010[J]. Lancet, 2014, 383:245-254.
[3] van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin:a systematic review and meta-analysis[J]. Lancet Neurol, 2010, 9:167-176.
[4] Poon MT, Fonville AF, Al-Shahi Salman R. Long-term prognosis after intracerebral haemorrhage:systematic review and meta-analysis[J]. J Neurol Neurosurg Psychiatry, 2014, 85:660-667.
[5] Tschoe C, Bushnell CD, Duncan PW, Alexander-Miller MA, Wolfe SQ. Neuroinflammation after intracerebral hemorrhage and potential therapeutic targets[J]. J Stroke, 2020, 22:29-46.
[6] Yang Z, Zhao T, Zou Y, Zhang JH, Feng H. Curcumin inhibits microglia inflammation and confers neuroprotection in intracerebral hemorrhage[J]. Immunol Lett, 2014, 160:89-95.
[7] Zhang Z, Zhang Z, Lu H, Yang Q, Wu H, Wang J. Microglial polarization and inflammatory mediators after intracerebral hemorrhage[J]. Mol Neurobiol, 2017, 54:1874-1886.
[8] Wang J, Yu L, Jiang C, Chen M, Ou C, Wang J. Bone marrow mononuclear cells exert long-term neuroprotection in a rat model of ischemic stroke by promoting arteriogenesis and angiogenesis[J]. Brain Behav Immun, 2013, 34:56-66.
[9] Mendelow AD, Gregson BA, Rowan EN, Murray GD, Gholkar A, Mitchell PM; STICH Ⅱ Investigators. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH Ⅱ):a randomised trial[J]. Lancet, 2013, 382:397-408.
[10] Mosser CA, Baptista S, Arnoux I, Audinat E. Microglia in CNS development:shaping the brain for the future[J]. Prog Neurobiol, 2017, 149/150:1-20.
[11] Wang G, Shi Y, Jiang X, Leak RK, Hu X, Wu Y, Pu H, Li WW, Tang B, Wang Y, Gao Y, Zheng P, Bennett MV, Chen J. HDAC inhibition prevents white matter injury by modulating microglia/macrophage polarization through the GSK3β/PTEN/Akt axis[J]. Proc Natl Acad Sci USA, 2015, 112:2853-2858.
[12] Casella G, Garzetti L, Gatta AT, Finardi A, Maiorino C, Ruffini F, Martino G, Muzio L, Furlan R. IL4 induces IL6-producing M2 macrophages associated to inhibition of neuroinflammation in vitro and in vivo[J]. J Neuroinflammation, 2016, 13:139.
[13] Kim CC, Nakamura MC, Hsieh CL. Brain trauma elicits non-canonical macrophage activation states[J]. J Neuroinflammation, 2016, 13:117.
[14] Ransohoff RM. A polarizing question:do M1 and M2 microglia exist[J]? Nat Neurosci, 2016, 19:987-991.
[15] Kiguchi N, Kobayashi D, Saika F, Matsuzaki S, Kishioka S. Inhibition of peripheral macrophages by nicotinic acetylcholine receptor agonists suppresses spinal microglial activation and neuropathic pain in mice with peripheral nerve injury[J]. J Neuroinflammation, 2018, 15:96.
[16] Zeiner PS, Preusse C, Golebiewska A, Zinke J, Iriondo A, Muller A, Kaoma T, Filipski K, Müller-Eschner M, Bernatz S, Blank AE, Baumgarten P, Ilina E, Grote A, Hansmann ML, Verhoff MA, Franz K, Feuerhake F, Steinbach JP, Wischhusen J, Stenzel W, Niclou SP, Harter PN, Mittelbronn M. Distribution and prognostic impact of microglia/macrophage subpopulations in gliomas[J]. Brain Pathol, 2019, 29:513-529.
[17] Mathews S, Branch Woods A, Katano I, Makarov E, Thomas MB, Gendelman HE, Poluektova LY, Ito M, Gorantla S. Human Interleukin-34 facilitates microglia-like cell differentiation and persistent HIV-1 infection in humanized mice[J]. Mol Neurodegener, 2019, 14:12.
[18] O'Neil SM, Witcher KG, McKim DB, Godbout JP. Forced turnover of aged microglia induces an intermediate phenotype but does not rebalance CNS environmental cues driving priming to immune challenge[J]. Acta Neuropathol Commun, 2018, 6:129.
[19] Rangaraju S, Raza SA, Li NX, Betarbet R, Dammer EB, Duong D, Lah JJ, Seyfried NT, Levey AI. Differential phagocytic properties of CD45low microglia and CD45high brain mononuclear phagocytes-activation and age-related effects[J]. Front Immunol, 2018, 9:405.
[20] Martin E, El-Behi M, Fontaine B, Delarasse C. Analysis of microglia and monocyte-derived macrophages from the central nervous system by flow cytometry[J]. J Vis Exp, 2017:55781.
[21] Liu DL, Zhao LX, Zhang S, Du JR. Peroxiredoxin 1-mediated activation of TLR4/NF-κB pathway contributes to neuroinflammatory injury in intracerebral hemorrhage[J]. Int Immunopharmacol, 2016, 41:82-89.
[22] Liew HK, Pang CY, Hsu CW, Wang MJ, Li TY, Peng HF, Kuo JS, Wang JY. Systemic administration of urocortin after intracerebral hemorrhage reduces neurological deficits and neuroinflammation in rats[J]. J Neuroinflammation, 2012, 9:13.
[23] Lei B, Dawson HN, Roulhac-Wilson B, Wang H, Laskowitz DT, James ML. Tumor necrosis factor α antagonism improves neurological recovery in murine intracerebral hemorrhage[J]. J Neuroinflammation, 2013, 10:103.
[24] Zhao H, Garton T, Keep RF, Hua Y, Xi G. Microglia/Macrophage polarization after experimental intracerebral hemorrhage[J]. Transl Stroke Res, 2015, 6:407-409.
[25] Taylor RA, Chang CF, Goods BA, Hammond MD, Mac Grory B, Ai Y, Steinschneider AF, Renfroe SC, Askenase MH, McCullough LD, Kasner SE, Mullen MT, Hafler DA, Love JC, Sansing LH. TGF-β1 modulates microglial phenotype and promotes recovery after intracerebral hemorrhage[J]. J Clin Invest, 2017, 127:280-292.
[26] Kerr N, Dietrich DW, Bramlett HM, Raval AP. Sexually dimorphic microglia and ischemic stroke[J]. CNS Neurosci Ther, 2019, 25:1308-1317.
[27] Voet S, Prinz M, van Loo G. Microglia in central nervous system inflammation and multiple sclerosis pathology[J]. Trends Mol Med, 2019, 25:112-123.
[28] Hiragi T, Ikegaya Y, Koyama R. Microglia after seizures and in epilepsy[J]. Cells, 2018, 7:26.
[29] Avdic S, McSharry BP, Steain M, Poole E, Sinclair J, Abendroth A, Slobedman B. Human cytomegalovirus-encoded human interleukin-10(IL-10) homolog amplifies its immunomodulatory potential by upregulating human IL-10 in monocytes[J]. J Virol, 2016, 90:3819-3827.
[30] Song L, Xu LF, Pu ZX, Wang HH. IL-10 inhibits apoptosis in brain tissue around the hematoma after ICH by inhibiting proNGF[J]. Eur Rev Med Pharmacol Sci, 2019, 23:3005-3011.
[31] Gris T, Laplante P, Thebault P, Cayrol R, Najjar A, Joannette-Pilon B, Brillant-Marquis F, Magro E, English SW, Lapointe R, Bojanowski M, Francoeur CL, Cailhier JF; Canadian Critical Care Translational Biology Group. Innate immunity activation in the early brain injury period following subarachnoid hemorrhage[J]. J Neuroinflammation, 2019, 16:253.
[32] Zhou K, Zhong Q, Wang YC, Xiong XY, Meng ZY, Zhao T, Zhu WY, Liao MF, Wu LR, Yang YR, Liu J, Duan CM, Li J, Gong QW, Liu L, Yang MH, Xiong A, Wang J, Yang QW. Regulatory T cells ameliorate intracerebral hemorrhage-induced inflammatory injury by modulating microglia/macrophage polarization through the IL-10/GSK3β/PTEN axis[J]. J Cereb Blood Flow Metab, 2017, 37:967-979.
[33] Wan S, Cheng Y, Jin H, Guo D, Hua Y, Keep RF, Xi G. Microglia activation and polarization after intracerebral hemorrhage in mice:the role of protease-activated receptor-1[J]. Transl Stroke Res, 2016, 7:478-487.
[34] Wang M, Cheng L, Chen ZL, Mungur R, Xu SH, Wu J, Liu XL, Wan S. Hyperbaric oxygen preconditioning attenuates brain injury after intracerebral hemorrhage by regulating microglia polarization in rats[J]. CNS Neurosci Ther, 2019, 25:1126-1133.
[35] Lan X, Han X, Li Q, Yang QW, Wang J. Modulators of microglial activation and polarization after intracerebral haemorrhage[J]. Nat Rev Neurol, 2017, 13:420-433.
[36] Hansen DV, Hanson JE, Sheng M. Microglia in Alzheimer's disease[J]. J Cell Biol, 2018, 217:459-472.
[37] Wang Y, Chen Q, Tan Q, Feng Z, He Z, Tang J, Feng H, Zhu G, Chen Z. Simvastatin accelerates hematoma resolution after intracerebral hemorrhage in a PPARγ-dependent manner[J]. Neuropharmacology, 2018, 128:244-254.
[38] Fang H, Chen J, Lin S, Wang P, Wang Y, Xiong X, Yang Q. CD36- mediated hematoma absorption following intracerebral hemorrhage:negative regulation by TLR4 signaling[J]. J Immunol, 2014, 192:5984-5992.
[39] Ni W, Mao S, Xi G, Keep RF, Hua Y. Role of erythrocyte CD47 in intracerebral hematoma clearance[J]. Stroke, 2016, 47:505-511.
[40] Wang G, Li T, Duan SN, Dong L, Sun XG, Xue F. PPAR-γ promotes hematoma clearance through haptoglobin-hemoglobin-CD163 in a rat model of intracerebral hemorrhage[J]. Behav Neurol, 2018:ID7646104.
[41] Liu R, Cao S, Hua Y, Keep RF, Huang Y, Xi G. CD163 expression in neurons after experimental intracerebral hemorrhage[J]. Stroke, 2017, 48:1369-1375.
[42] Mecca C, Giambanco I, Donato R, Arcuri C. Microglia and aging:the role of the TREM2-DAP12 and CX3CL1-CX3CR1 axes[J]. Int J Mol Sci, 2018, 19:318.
[43] Zhang Y, Zhao L, Wang X, Ma W, Lazere A, Qian HH, Zhang J, Abu-Asab M, Fariss RN, Roger JE, Wong WT. Repopulating retinal microglia restore endogenous organization and function under CX3CL1-CX3CR1 regulation[J]. Sci Adv, 2018, 4:eaap8492.
[44] Hickman S, Izzy S, Sen P, Morsett L, El Khoury J. Microglia in neurodegeneration[J]. Nat Neurosci, 2018, 21:1359-1369.
[45] Zhao XF, Alam MM, Liao Y, Huang T, Mathur R, Zhu X, Huang Y. Targeting microglia using Cx3cr1-Cre lines:revisiting the specificity[J]. eNeuro, 2019, 6:ENEURO.0114-19.
[46] Yang G, Chen L, Gao Z, Wang Y. Implication of microglia activation and CSF1/CSF1R pathway in lumbar disc degeneration-related back pain[J]. Mol Pain, 2018, 14:1744806918811238.
[47] Sansing LH, Harris TH, Welsh FA, Kasner SE, Hunter CA, Kariko K. Toll-like receptor 4 contributes to poor outcome after intracerebral hemorrhage[J]. Ann Neurol, 2011, 70:646-656.
[48] Taylor RA, Hammond MD, Ai Y, Sansing LH. CX3CR1 signaling on monocytes is dispensable after intracerebral hemorrhage[J]. PLoS One, 2014, 9:e114472.
[49] Zhang ZJ, Jiang BC, Gao YJ. Chemokines in neuron-glial cell interaction and pathogenesis of neuropathic pain[J]. Cell Mol Life Sci, 2017, 74:3275-3291.
[50] Zhou Y, Wang Y, Wang J, Anne Stetler R, Yang QW. Inflammation in intracerebral hemorrhage:from mechanisms to clinical translation[J]. Prog Neurobiol, 2014, 115:25-44.
[51] Guo F, Xu D, Lin Y, Wang G, Wang F, Gao Q, Wei Q, Lei S. Chemokine CCL2 contributes to BBB disruption via the p38 MAPK signaling pathway following acute intracerebral hemorrhage[J]. FASEB J, 2020, 34:1872-1884.
[52] Yao Y, Tsirka SE. The CCL2-CCR2 system affects the progression and clearance of intracerebral hemorrhage[J]. Glia, 2012, 60:908-918.
[53] Shi SX, Li YJ, Shi K, Wood K, Ducruet AF, Liu Q. IL (Interleukin)-15 bridges astrocyte-microglia crosstalk and exacerbates brain injury following intracerebral hemorrhage[J]. Stroke, 2020, 51:967-974.
[54] Joseph MJ, Caliaperumal J, Schlichter LC. After intracerebral hemorrhage, oligodendrocyte precursors proliferate and differentiate inside white-matter tracts in the rat striatum[J]. Transl Stroke Res, 2016, 7:192-208.
[55] Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, van Wijngaarden P, Wagers AJ, Williams A, Franklin RJM, Ffrench-Constant C. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination[J]. Nat Neurosci, 2013, 16:1211-1218.
[56] Zhao X, Song S, Sun G, Strong R, Zhang J, Grotta JC, Aronowski J. Neuroprotective role of haptoglobin after intracerebral hemorrhage[J]. J Neurosci, 2009, 29:15819-15827. |