中国现代神经疾病杂志 ›› 2025, Vol. 25 ›› Issue (3): 165-174. doi: 10.3969/j.issn.1672-6731.2025.03.002

• 数智神经外科学 • 上一篇    下一篇

2 基于宏观与微观影像学特征融合的胶质瘤基因状态与分级预测研究

李臻1, 宋鹏斐2, 朱锐泽1, 江山1, 曹诗文3, 余锦华4, 史之峰1,*()   

  1. 1. 201107 上海,复旦大学附属华山医院神经外科(李臻,朱锐泽,江山,史之峰)
    2. 200438 上海,复旦大学信息科学与工程学院生物医学工程系 2023 级(宋鹏斐)
    3. 200438 上海,复旦大学信息科学与工程学院生物医学工程系 2021 级(曹诗文)
    4. 200438 上海,复旦大学信息科学与工程学院生物医学工程系, 生物医学工程系(余锦华)
  • 收稿日期:2025-02-13 出版日期:2025-03-25 发布日期:2025-04-21
  • 通讯作者: 史之峰
  • 作者简介:

    李臻与宋鹏斐对本文有同等贡献

    LI Zhen and SONG Peng-fei contributed equally to the article

  • 基金资助:
    上海市卫生健康委员会优秀项目(20234Z0009); 国家重点研发计划项目(2022YFF1202804); 国家自然科学基金资助项目(82373018); 国家自然科学基金资助项目(82072020); 上海市科委医学创新研究项目(23Y11906200)

Prediction of genetic status and grading in glioma based on fusion of macro - and micro-imaging features

Zhen LI1, Peng-fei SONG2, Rui-ze ZHU1, Shan JIANG1, Shi-wen CAO3, Jin-hua YU4, Zhi-feng SHI1,*()   

  1. 1. Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 201107, China
    2. Grade 2023 of Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
    3. Grade 2021 of Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
    4. Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
  • Received:2025-02-13 Online:2025-03-25 Published:2025-04-21
  • Contact: Zhi-feng SHI
  • Supported by:
    Excellent Project of Shanghai Municipal Health Commission(20234Z0009); National Key Research and Development Program of China(2022YFF1202804); The National Natural Science Foundation of China(82373018); The National Natural Science Foundation of China(82072020); Medical Innovation Research Project of Shanghai Science and Technology Commission(23Y11906200)

摘要:

目的: 建立基于MRI与全视野数字切片(WSI)特征融合的双层特征蒸馏的多实例学习(DLFD-MIL)模型,实现对成人型弥漫性胶质瘤IDH1突变、1p/19q共缺失及世界卫生组织(WHO)分级的高精准性预测。方法: 选择2021年1月至2024年6月复旦大学附属华山医院收治的212例成人型弥漫性胶质瘤患者及美国癌症基因组图谱计划42例成人型弥漫性胶质瘤病例,联合分析术前T2-FLAIR影像与术后WSI数据。构建DLFD-MIL模型,采用伪包生成策略解决WSI弱监督学习中的实例标签缺失问题,Concat融合方式实现多模态融合;绘制受试者工作特征曲线,以曲线下面积比较单模态与多模态特征融合对胶质瘤基因状态和WHO分级的预测效能。结果: IDH1突变预测任务中,多模态特征融合模型的曲线下面积大于单模态WSI模型(Z = 2.752,P = 0.006)和单模态T2-FLAIR模型(Z = 5.662,P = 0.000);在1p/19q共缺失预测任务中,多模态特征融合模型的曲线下面积与单模态WSI模型(Z = - 0.245,P = 0.806)和单模态T2-FLAIR模型(Z = 0.781,P = 0.435)差异均无统计学意义;在WHO分级预测任务中,多模态特征融合模型的曲线下面积大于单模态T2-FLAIR模型(Z = 4.830,P = 0.000),而与单模态WSI模型差异无统计学意义(Z = 1.739,P = 0.082)。结论: 基于宏观与微观影像学特征融合模型可以提高胶质瘤IDH1基因分型和WHO分级的预测精度,为临床制定个性化治疗方案提供可靠的人工智能决策支持工具。

关键词: 神经胶质瘤, 磁共振成像, 病理学, 基因, 肿瘤分级, 深度学习, ROC曲线

Abstract:

Objective: To develop a dual-layer feature distillation multiple instance learning (DLFD- MIL) model integrating MRI and whole slide image (WSI) features for precise prediction of IDH1 mutation, 1p/19q codeletion, and World Health Organization (WHO) grading in adult-type diffuse gliomas. Methods: A retrospective cohort of 212 adult-type diffuse gliomas patients from Huashan Hospital, Fudan University (January 2021 to June 2024) and 42 cases from The Cancer Genome Atlas (TCGA) were included. Preoperative T2-FLAIR and postoperative WSI data were jointly analyzed. The DLFD-MIL model addressed the lack of instance - level labels in weakly supervised WSI learning via a pseudo - bag generation strategy. Multimodal feature fusion was achieved through Concat. Diagnostic performance for molecular subtyping and WHO grading was evaluated by comparing area under the curve (AUC) of receiver operating characteristic (ROC) curve between single - mode (WSI or MRI) and multi - mode. Results: In the IDH1 mutation prediction task, AUC of the multi - mode feature fusion model surpassed single - mode WSI model (Z = 2.752, P = 0.006) and single-mode T2 -FLAIR model (Z = 5.662, P = 0.000). In the 1p/19q codeletion prediction task, no statistically significant differences in AUC were observed between the multi-mode feature fusion model and either single-mode WSI model (Z = - 0.245, P = 0.806) or T2-FLAIR model (Z = 0.781, P = 0.435). In the WHO grading prediction task, the multi - mode feature fusion model showed no significant differences in AUC compared to single - mode WSI model (Z = 1.739, P = 0.082), however its AUC was significantly higher than single -mode T2 -FLAIR model (Z = 4.830, P = 0.000). Conclusions: Multi-mode fusion of macro - and micro - imaging features improves prediction accuracy for IDH1 genotyping and WHO grading in gliomas, providing a reliable artificial intelligence (AI) decision - support tool for personalized clinical management.

Key words: Glioma, Magnetic resonance imaging, Pathology, Genes, Neoplasm grading, Deep learning, ROC curve