[1] Tang X, Zhao W, Lu M, Zhang X, Zhang P, Xin Z, Sun R, Tian W, Cardoso MA, Yang J, Simó R, Zhou JB, Stehouwer CDA. Relationship between central obesity and the incidence of cognitive impairment and dementia from cohort studies involving 5, 060, 687 participants[J]. Neurosci Biobehav Rev, 2021, 130:301-313. [2] Segatto M, Tonini C, Pfrieger FW, Trezza V, Pallottini V. Loss of mevalonate/cholesterol homeostasis in the brain:a focus on autism spectrum disorder and rett syndrome[J]. Int J Mol Sci, 2019, 20:3317. [3] Gao P, Ye L, Cheng H, Li H. The mechanistic role of Bridging Integrator 1(BIN1) in Alzheimer's disease[J]. Cell Mol Neurobiol, 2021, 41:1431-1440. [4] Brenowitz WD, Xiang Y, McEvoy CT, Yang C, Yaffe K, Le WD, Leng Y. Current Alzheimer disease research highlights:evidence for novel risk factors[J]. Chin Med J (Engl), 2021, 134:2150-2159. [5] Biscetti L, Lupidi M, Luchetti E, Eusebi P, Gujar R, Vergaro A, Cagini C, Parnetti L. Novel noninvasive biomarkers of prodromal Alzheimer disease:the role of optical coherence tomography and optical coherence tomography-angiography[J]. Eur J Neurol, 2021, 28:2185-2191. [6] Chen Y, Strickland MR, Soranno A, Holtzman DM. Apolipoprotein E:structural insights and links to Alzheimer disease pathogenesis[J]. Neuron, 2021, 109:205-221. [7] Wang H, Kulas JA, Wang C, Holtzman DM, Ferris HA, Hansen SB. Regulation of beta-amyloid production in neurons by astrocyte-derived cholesterol[J]. Proc Natl Acad Sci USA, 2021, 118:e2102191118. [8] Birolini G, Valenza M, Di Paolo E, Vezzoli E, Talpo F, Maniezzi C, Caccia C, Leoni V, Taroni F, Bocchi VD, Conforti P, Sogne E, Petricca L, Cariulo C, Verani M, Caricasole A, Falqui A, Biella G, Cattaneo E. Striatal infusion of cholesterol promotes dose-dependent behavioral benefits and exerts disease-modifying effects in Huntington's disease mice[J]. EMBO Mol Med, 2020, 12:e12519. [9] Genaro-Mattos TC, Anderson A, Allen LB, Korade Z, Mirnics K. Cholesterol biosynthesis and uptake in developing neurons[J]. ACS Chem Neurosci, 2019, 10:3671-3681. [10] Björkhem I, Meaney S. Brain cholesterol:long secret life behind a barrier[J]. Arterioscler Thromb Vasc Biol, 2004, 24:806-815. [11] Korade Z, Heffer M, Mirnics K. Medication effects on developmental sterol biosynthesis[J]. Mol Psychiatry, 2021.[Epub ahead of print] [12] Loera-Valencia R, Vazquez-Juarez E, Muñoz A, Gerenu G, Gómez-Galán M, Lindskog M, DeFelipe J, Cedazo-Minguez A, Merino-Serrais P. High levels of 27-hydroxycholesterol results in synaptic plasticity alterations in the hippocampus[J]. Sci Rep, 2021, 11:3736. [13] Gamba P, Giannelli S, Staurenghi E, Testa G, Sottero B, Biasi F, Poli G, Leonarduzzi G. The controversial role of 24-S-Hydroxycholesterol in Alzheimer's disease[J]. Antioxidants (Basel), 2021, 10:740. [14] Doria M, Maugest L, Moreau T, Lizard G, Vejux A. Contribution of cholesterol and oxysterols to the pathophysiology of Parkinson's disease[J]. Free Radic Biol Med, 2016, 101:393-400. [15] Petrov AM, Kasimov MR, Zefirov AL. Cholesterol in the pathogenesis of Alzheimer's, Parkinson's diseases and autism:link to synaptic dysfunction[J]. Acta Naturae, 2017, 9:26-37. [16] Rickman OJ, Baple EL, Crosby AH. Lipid metabolic pathways converge in motor neuron degenerative diseases[J]. Brain, 2020, 143:1073-1087. [17] Haag MD, Hofman A, Koudstaal PJ, Stricker BH, Breteler MM. Statins are associated with a reduced risk of Alzheimer disease regardless of lipophilicity:the rotterdam study[J]. J Neurol Neurosurg Psychiatry, 2009, 80:13-17. [18] Ullrich C, Pirchl M, Humpel C. Hypercholesterolemia in rats impairs the cholinergic system and leads to memory deficits[J]. Mol Cell Neurosci, 2010, 45:408-417. [19] Thirumangalakudi L, Prakasam A, Zhang R, Bimonte-Nelson H, Sambamurti K, Kindy MS, Bhat NR. High cholesterol-induced neuroinflammation and amyloid precursor protein processing correlate with loss of working memory in mice[J]. J Neurochem, 2008, 106:475-485. [20] Ledesma MD, Martin MG, Dotti CG. Lipid changes in the aged brain:effect on synaptic function and neuronal survival[J]. Prog Lipid Res, 2012, 51:23-35. [21] Ferris HA, Perry RJ, Moreira GV, Shulman GI, Horton JD, Kahn CR. Loss of astrocyte cholesterol synthesis disrupts neuronal function and alters whole-body metabolism[J]. Proc Natl Acad Sci USA, 2017, 114:1189-1194. [22] Fukui K, Ferris HA, Kahn CR. Effect of cholesterol reduction on receptor signaling in neurons[J]. J Biol Chem, 2016, 291:15910. [23] Martin MG, Ahmed T, Korovaichuk A, Venero C, Menchón SA, Salas I, Munck S, Herreras O, Balschun D, Dotti CG. Constitutive hippocampal cholesterol loss underlies poor cognition in old rodents[J]. EMBO Mol Med, 2014, 6:902-917. [24] Makowski L. The structural basis of amyloid strains in Alzheimer's disease[J]. ACS Biomater Sci Eng, 2020, 6:2498-2505. [25] Zhang Z, Li XG, Wang ZH, Song M, Yu SP, Kang SS, Liu X, Zhang Z, Xie M, Liu GP, Wang JZ, Ye K. δ-secretase-cleaved Tau stimulates Aβ production via upregulating STAT1-BACE1 signaling in Alzheimer's disease[J]. Mol Psychiatry, 2021, 26:586-603. [26] Samimi N, Asada A, Ando K. Tau abnormalities and autophagic defects in neurodegenerative disorders; a feed-forward cycle[J]. Galen Med J, 2020, 9:e1681. [27] Kaur D, Behl T, Sehgal A, Singh S, Sharma N, Bungau S. Multifaceted Alzheimer's disease:building a roadmap for advancement of novel therapies[J]. Neurochem Res, 2021, 46:2832-2851. [28] Kalvodova L, Kahya N, Schwille P, Ehehalt R, Verkade P, Drechsel D, Simons K. Lipids as modulators of proteolytic activity of BACE:involvement of cholesterol, glycosphingolipids, and anionic phospholipids in vitro[J]. J Biol Chem, 2005, 280:36815-36823. [29] Grimm MO, Mett J, Grimm HS, Hartmann T. APP function and lipids:a bidirectional link[J]. Front Mol Neurosci, 2017, 10:63. [30] Tao PF, Huang HC. Regulation of AβPP glycosylation modification and roles of glycosylation on AβPP cleavage in Alzheimer's disease[J]. ACS Chem Neurosci, 2019, 10:2115-2124. [31] Alhajraf F, Ness D, Hye A, Strydom A. Plasma amyloid and tau as dementia biomarkers in Down syndrome:systematic review and meta-analyses[J]. Dev Neurobiol, 2019, 79:684-698. [32] van der Kant R, Langness VF, Herrera CM, Williams DA, Fong LK, Leestemaker Y, Steenvoorden E, Rynearson KD, Brouwers JF, Helms JB, Ovaa H, Giera M, Wagner SL, Bang AG, Goldstein LSB. Cholesterol metabolism is a druggable axis that independently regulates tau and amyloid-β in iPSC-derived Alzheimer's disease neurons[J]. Cell Stem Cell, 2019, 24:363-375.e9. Banach M, Corsini A, Sirtori CR, Ferri N, Ruscica [33] Macchi C, M. Changes in circulating pro-protein convertase subtilisin/kexin type 9 levels-experimental and clinical approaches with lipid-lowering agents[J]. Eur J Prev Cardiol, 2019, 26:930-949. [34] Feringa FM, van der Kant R. Cholesterol and Alzheimer's disease; from risk genes to pathological effects[J]. Front Aging Neurosci, 2021, 13:690372. in the brain [35] Jin U, Park SJ, Park SM. Cholesterol metabolism and its association with Parkinson's disease[J]. Exp Neurobiol, 2019, 28:554-567. Seo J. ApoE4-induced cholesterol [36] Jeong W, Lee H, Cho S, dysregulation and its brain cell type-specific implications in the pathogenesis of Alzheimer's disease[J]. Mol Cells, 2019, 42:739-746. [37] Huang B, Song BL, Xu C. Cholesterol metabolism in cancer:mechanisms and therapeutic opportunities[J]. Nat Metab, 2020, 2:132-141. [38] Mahboobnia K, Pirro M, Marini E, Grignani F, Bezsonov EE, Jamialahmadi T, Sahebkar A. PCSK9 and cancer:rethinking the link[J]. Biomed Pharmacother, 2021, 140:111758. [39] Duprez DA, Handelsman Y, Koren M. Cardiovascular outcomes and proprotein convertase subtilisin/kexin type 9 inhibitors:current data and future prospects[J]. Vasc Health Risk Manag, 2020, 16:403-418. [40] Liu M, Wu G, Baysarowich J, Kavana M, Addona GH, Bierilo KK, Mudgett JS, Pavlovic G, Sitlani A, Renger JJ, Hubbard BK, Fisher TS, Zerbinatti CV. PCSK9 is not involved in the degradation of LDL receptors and BACE1 in the adult mouse brain[J]. J Lipid Res, 2010, 51:2611-2618. [41] O'Connell EM, Lohoff FW. Proprotein convertase subtilisin/kexin type 9(PCSK9) in the brain and relevance for neuropsychiatric disorders[J]. Front Neurosci, 2020, 14:609. [42] Apaijai N, Moisescu DM, Palee S, McSweeney CM, Saiyasit N, Maneechote C, Boonnag C, Chattipakorn N, Chattipakorn SC. Pretreatment with PCSK9 inhibitor protects the brain against cardiac ischemia/reperfusion injury through a reduction of neuronal inflammation and amyloid beta aggregation[J]. J Am Heart Assoc, 2019, 8:e010838. [43] Bhattamisra SK, Yap KH, Rao V, Choudhury H. Multiple biological effects of an iridoid glucoside, catalpol and its underlying molecular mechanisms[J]. Biomolecules, 2019, 10:32. [44] Martin MG, Perga S, Trovò L, Rasola A, Holm P, Rantamäki T, Harkany T, Castrén E, Chiara F, Dotti CG. Cholesterol loss enhances TrkB signaling in hippocampal neurons aging in vitro[J]. Mol Biol Cell, 2008, 19:2101-2112. [45] Suzuki S, Kiyosue K, Hazama S, Ogura A, Kashihara M, Hara T, Koshimizu H, Kojima M. Brain-derived neurotrophic factor regulates cholesterol metabolism for synapse development[J]. J Neurosci, 2007, 27:6417-6427. [46] Spagnuolo MS, Donizetti A, Iannotta L, Aliperti V, Cupidi C, Bruni AC, Cigliano L. Brain-derived neurotrophic factor modulates cholesterol homeostasis and Apolipoprotein E synthesis in human cell models of astrocytes and neurons[J]. J Cell Physiol, 2018, 233:6925-6943. |