[1] Lim CT, Korbonits M. Update on the clinicopathology of pituitary adenomas[J]. Endocr Prac, 2018, 24:473-488. [2] Fernandez A, Karavitaki N, Wass JA. Prevalence of pituitary adenomas: a community-based, cross-sectional study in Banbury (Oxfordshire, UK)[J]. Clin Endocrinol (Oxf), 2010, 72:377-382. [3] Daly AF, Tichomirowa MA, Beckers A. The epidemiology and genetics of pituitary adenomas[J]. Best Pract Res Clin Endocrinol Metab, 2009, 23:543-554. [4] Way GP, Allaway RJ, Bouley SJ, Fadul CE, Sanchez Y, Greene CS. A machine learning classifier trained on cancer transcriptomes detects NF1 inactivation signal in glioblastoma[J]. BMC Genomics, 2017, 18:127. [5] Deo RC. Machine learning in medicine[J]. Circulation, 2015, 132:1920-1930. [6] Panzer RJ, Feibel JH, Barker WH, Griner PF. Predicting the likelihood of hemorrhage in patients with stroke[J]. Arch Intern Med, 1985, 145:1800-1803. [7] Phillips WE 2nd, Velthuizen RP, Phuphanich S, Hall LO, Clarke LP, Silbiger ML. Application of fuzzy C-means segmentation technique for tissue differentiation in MR images of a hemorrhagic glioblastoma multiforme[J]. Magn Reson Imaging, 1995, 13:277-290. [8] Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine learning for medical imaging[J]. Radiographics, 2017, 37:505-515. [9] Topol EJ. High-performance medicine: the convergence of human and artificial intelligence[J]. Nat Med, 2019, 25:44-56. [10] Adamson AS, Welch HG. Machine learning and the cancer diagnosis problem: no gold standard[J]. N Engl J Med, 2019, 381:2285-2287. [11] Lambin P, Leijenaar RT, Deist TM, Peerlings J, de Jong EE, van Timmeren J, Sanduleanu S, Larue R, Even AJG, Jochems A, van Wijk Y, Woodruff H, van Soest J, Lustberg T, Roelofs E, van Elmpt W, Dekker A, Mottaghy FM, Wildberger JE, Walsh S. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14:749-762. [12] Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D, Hoebers F, Rietbergen MM, Leemans CR, Dekker A, Quackenbush J, Gillies RJ, Lambin P. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J]. Nat Commun, 2014, 5:4006. [13] Gatenby RA, Grove O, Gillies RJ. Quantitative imaging in cancer evolution and ecology[J]. Radiology, 2013, 269:8-15. [14] Liu Y, Liu X, Hong X, Liu P, Bao X, Yao Y, Xing B, Li Y, Huang Y, Zhu H, Lu L, Wang R, Feng M. Prediction of recurrence after transsphenoidal surgery for Cushing's disease: the use of machine learning algorithms[J]. Neuroendocrinology, 2019, 108:201-210. [15] Fan Y, Li Y, Li Y, Feng S, Bao X, Feng M, Wang R. Development and assessment of machine learning algorithms for predicting remission after transsphenoidal surgery among patients with acromegaly[J]. Endocrine, 2019, 67:412-422. [16] Fan Y, Liu Z, Hou B, Li L, Liu X, Liu Z, Wang R, Lin Y, Feng F, Tian J, Feng M. Development and validation of an MRI-based radiomic signature for the preoperative prediction of treatment response in patients with invasive functional pituitary adenoma[J]. Eur J Radiol, 2019, 121:108647. [17] Kocak B, Durmaz ES, Kadioglu P, Polat Korkmaz O, Comunoglu N, Tanriover N, Kocer N, Islak C, Kizilkilic O. Predicting response to somatostatin analogues in acromegaly: machine learning-based high-dimensional quantitative texture analysis on T2-weighted MRI[J]. Eur Radiol, 2019, 29:2731-2739. [18] Fan Y, Jiang S, Hua M, Feng S, Feng M, Wang R. Machine learning-based radiomics predicts radiotherapeutic response in patients with acromegaly[J]. Front Endocrinol (Lausanne), 2019, 10:588. [19] Wei R, Jiang C, Gao J, Xu P, Zhang D, Sun Z, Liu X, Deng K, Bao X, Sun G, Yao Y, Lu L, Zhu H, Wang R, Feng M. Deep-learning approach to automatic identification of facial anomalies in endocrine disorders[J]. Neuroendocrinology, 2019.[Epub ahead of print] |