[1] Global Initiative for Asthma. Global strategy for asthma management and prevention, 2023. Updated July 2023. Available from: www.ginasthma.org. [2] GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990—2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet, 2020, 396: 1204-1222. [3] Yuan B, Mao J, Wang J, et al. Naringenin mitigates cadmium-induced cell death, oxidative stress, mitochondrial dysfunction, and inflammation in KGN cells by regulating the expression of sirtuin-1[J]. Drug Chem Toxicol, 2024: 1-12. doi:10.1080/01480545.2023.2288798. [4] Hayat MF, Zohaib M, Ijaz MU, et al. Ameliorative potential of eriocitrin against cadmium instigated hepatotoxi-city in rats via regulating Nrf2/keap1 pathway[J]. J Trace Elem Med Biol, 2024, 84: 127445. doi:10.1016/j.jtemb.2024.127445. [5] Gai Y, Bai C, Zhang W, et al. Nootkatone attenuates airway inflammation in asthmatic mice through repressing ROS-induced NLRP3 inflammasome activation[J]. Biochem Cell Biol, 2023, 101: 513-522. doi:10.1139/bcb-2023-0009. [6] Li FJ, Surolia R, Li H, et al. Low-dose cadmium exposure induces peribronchiolar fibrosis through site-specific phosphorylation of vimentin[J]. Am J Physiol Lung Cell Mol Physiol, 2017, 313: L80-l91. doi:10.1152/ajplung.00087.2017. [7] Raffee LA, Alawneh KZ, Alassaf RA, et al. Effects of elemental mercury vapor inhalation on arterial blood gases, lung histology, and interleukin-1 expression in pulmonary tissues of rats[J]. ScientificWorldJournal, 2021, 2021: 4141383. doi:10.1155/2021/4141383. [8] Lee JY, Choi YH, Choi HI, et al. Association between environmental mercury exposure and allergic disorders in Korean children: Korean National Environmental Health Survey (KoNEHS) cycles 3-4 (2015-2020)[J]. Sci Rep, 2024, 14: 1472. doi:10.1038/s41598-024-51811-3. [9] Mei P, Ding EM, Yin HY, et al. Downregulation of serum PTEN expression in mercury-exposed population and PI3K/AKT pathway-induced inflammation[J]. Biomed Environ Sci, 2024, 37: 354-366. doi:10.3967/bes2024.040. [10] Miao J, Feng S, Dou S, et al. Association between mercury exposure and lung function in young adults: a prospective cohort study in Shandong, China[J]. Sci Total Environ, 2023, 878: 162759. doi:10.1016/j.scitotenv.2023.162759. [11] Wei W, Wu X, Bai Y, et al. Lead exposure and its interactions with oxidative stress polymorphisms on lung function impairment: results from a longitudinal popula-tion-based study[J]. Environ Res, 2020, 187: 109645. doi:10.1016/j.envres.2020.109645. [12] Goyal T, Mitra P, Singh P, et al. Effect of occupational co-exposure to lead and cadmium on selected immunomodulatory cytokines[J]. Toxicol Ind Health, 2022, 38: 1-10. doi:10.1177/07482337211019172. [13] Zeng Z, Xu X, Zhu Y, et al. Pb and Cd exposure linked with IL-10 and IL-13 gene polymorphisms in asthma risk relevant immunomodulation in children[J]. Chemosphere, 2022, 294: 133656. doi:10.1016/j.chemosphere.2022.133656. [14] Liu N, Wang D, Tian J, et al. PM(2.5)-bound metals and blood metals are associated with pulmonary function and Th17/Treg imbalance: a panel study of asthmatic adults[J]. Chemosphere, 2023, 340: 139869. doi:10.1016/j.chemosphere.2023.139869. [15] Wen J, Giri M, Xu L, et al. Association between exposure to selected heavy metals and blood eosinophil counts in asthmatic adults: results from NHANES 2011—2018[J]. J Clin Med, 2023, 12. doi:10.3390/jcm12041543. [16] To T, Terebessy E, Zhu J, et al. Does early life exposure to exogenous sources of reactive oxygen species (ROS) increase the risk of respiratory and allergic diseases in children? a longitudinal cohort study[J]. Environ Health, 2022, 21: 90. doi:10.1186/s12940-022-00902-7. [17] Guo J, Cheng J, Zheng N, et al. Copper promotes tumorigenesis by activating the PDK1-AKT oncogenic pathway in a copper transporter 1 dependent manner[J]. Adv Sci (Weinh), 2021, 8: e2004303. doi:10.1002/advs.202004303. [18] Areecheewakul S, Adamcakova-Dodd A, Zacharias ZR, et al. Immunomodulatory effects of subacute inhalation exposure to copper oxide nanoparticles in house dust mite-induced asthma[J]. ACS Nano, 2023, 17: 14586-14603. doi:10.1021/acsnano.3c01668. [19] Sharma M, Khan FH, Mahmood R. Nickel chloride generates cytotoxic ROS that cause oxidative damage in human erythrocytes[J]. J Trace Elem Med Biol, 2023, 80: 127272. doi:10.1016/j.jtemb.2023.127272. [20] Zhang X, Tanwar VS, Jose CC, et al. Transcriptional repression of E-cadherin in nickel-exposed lung epithelial cells mediated by loss of Sp1 binding at the promoter[J]. Mol Carcinog, 2022, 61: 99-110. doi:10.1002/mc.23364. [21] Zhang X, Bradford B, Baweja S, et al. Nickel-induced transcriptional memory in lung epithelial cells promotes interferon signaling upon nicotine exposure[J]. Toxicol Appl Pharmacol, 2023, 481: 116753. doi:10.1016/j.taap.2023.116753. [22] Zeng Y, Yang Q, Ouyang Y, et al. Nickel induces blood-testis barrier damage through ROS-mediated p38 MAPK pathways in mice[J]. Redox Biol, 2023, 67: 102886. doi:10.1016/j.redox.2023.102886. [23] Liu F, Cheng X, Wu S, et al. Nickel oxide nanoparticles induce apoptosis and ferroptosis in airway epithelial cells via ATF3[J]. Environ Toxicol, 2022, 37: 1093-1103. doi:10.1002/tox.23467. |