[1] Pons TP, Garraghty PE, Ommaya AK, Kaas JH, Taub E, Mishkin M. Massive cortical reorganization after sensory deafferentation in adult macaques[J]. Science, 1991, 252:1857-1860. [2] Boyko A, Tsepkova P, Aleshin V, Artiukhov A, Mkrtchyan G, Ksenofontov A, Baratova L, Ryabov S, Graf A, Bunik V. Severe spinal cord injury in rats induces chronic changes in the spinal cord and cerebral cortex metabolism, adjusted by thiamine that improves locomotor performance[J]. Front Mol Neurosci, 2021, 14:620593. [3] Liu SJ, Zhang JW, Wang FY, Tang HH, Bai JZ, Lü Z, Li JJ. Motor control function of brain in subacute complete spinal cord injured patients:a functional magnetic resonance imaging study[J]. Zhongguo Kang Fu Li Lun Yu Shi Jian, 2020, 26:757-765.[刘舒佳, 张军卫, 王方永, 唐和虎, 白金柱, 吕振, 李建军. 完全性脊髓损伤亚急性期脑运动控制功能变化的功能磁共振研究[J]. 中国康复理论与实践, 2020, 26:757-765.] [4] Hawasli AH, Rutlin J, Roland JL, Murphy RKJ, Song SK, Leuthardt EC, Shimony JS, Ray WZ. Spinal cord injury disrupts resting-state networks in the human brain[J]. J Neurotrauma, 2018, 35:864-873. [5] Anil K, Demain S, Burridge J, Simpson D, Taylor J, Cotter I, Vuckovic A. The importance of self-efficacy and negative affect for neurofeedback success for central neuropathic pain after a spinal cord injury[J]. Sci Rep, 2022, 12:10949. [6] Wu Y. Clinical application of functional near infrared spectroscopy in rehabilitation of stroke patients[J]. Zhongguo Kang Fu Yi Xue Za Zhi, 2020, 35:1281-1283.[吴毅. 功能性近红外光谱技术在脑卒中患者康复中的临床应用[J]. 中国康复医学杂志, 2020, 35:1281-1283.] [7] Sun X, Long H, Zhao C, Duan Q, Zhu H, Chen C, Sun W, Ju F, Sun X, Zhao Y, Xue B, Tian F, Mou X, Yuan H. Analgesia-enhancing effects of repetitive transcranial magnetic stimulation on neuropathic pain after spinal cord injury:an fNIRS study[J].Restor Neurol Neurosci, 2019, 37:497-507. [8] Zou Y, Zhang CJ, Kong Y. A study of near-infrared spectroscopy during motor imagery in patients with spinal cord injury[J]. Chuang Shang Wai Ke Za Zhi, 2022, 24:175-181.[邹颖, 张长杰, 孔瑛. 脊髓损伤患者运动想象期间的近红外脑功能成像研究[J]. 创伤外科杂志, 2022, 24:175-181.] [9] ASIA and ISCoS International Standards Committee. The 2019 revision of the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI):what's new[J]? Spinal Cord, 2019, 57:815-817. [10] Tian JZ, Xie HG, Qin B, Shi J, Wang YH, Wang XP, Du YF, Wang HL, Xiao WZ, Yu BC, Zhang SZ, Wang LN. Chinese guidelines for the application of brief cognitive tests in the diagnosis of dementia[J]. Zhonghua Yi Xue Za Zhi, 2016, 96:2945-2959.[田金洲, 解恒革, 秦斌, 时晶, 王荫华, 王新平, 杜怡峰, 王华丽, 肖卫忠, 于宝成, 张守字, 王鲁宁. 中国简短认知测试在痴呆诊断中的应用指南[J]. 中华医学杂志, 2016, 96:2945-2959.] [11] Scholkmann F, Spichtig S, Muehlemann T, Wolf M. How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation[J].Physiol Meas, 2010, 31:649-662. [12] Cope M, Delpy DT. System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination[J]. Med Biol Eng Comput, 1988, 26:289-294. [13] Strangman G, Culver JP, Thompson JH, Boas DA. A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation[J]. Neuroimage, 2002, 17:719-731. [14] Kawabata Duncan K, Tokuda T, Sato C, Tagai K, Dan I. Willingness-to-pay-associated right prefrontal activation during a single, real use of cosmetics as revealed by functional near-infrared spectroscopy[J]. Front Hum Neurosci, 2019, 13:16. [15] Li HZ, Fan CY, Xie HY, Wu JF, Tian S, Wu Y, Zhu YL, Hu RP. Functional connectivity patterns in global aphasia by functional near-infrared spectroscopy[J]. Zhongguo Kang Fu Yi Xue Za Zhi, 2021, 36:1233-1239.[李浩正, 范晨雨, 谢鸿宇, 吴军发, 田闪, 吴毅, 朱玉连, 胡瑞萍. 脑卒中后完全性失语症患者功能连接模式的功能性近红外光谱成像研究[J]. 中国康复医学杂志, 2021, 36:1233-1239.] [16] Friston KJ. Functional and effective connectivity:a review[J].Brain Connect, 2011, 1:13-36. [17] Cieplucha A, Trojnarska O, Bartczak-Rutkowska A, Kociemba A, Rajewska-Tabor J, Kramer L, Pyda M. Severity scores for ebstein anomaly:credibility and usefulness of echocardiographic vs magnetic resonance assessments of the celermajer index[J].Can J Cardiol, 2019, 35:1834-1841. [18] Xia M, Wang J, He Y. BrainNet Viewer:a network visualization tool for human brain connectomics[J]. PLoS One, 2013, 8:e68910. [19] Wang W, Xie W, Zhang Q, Liu L, Liu J, Zhou S, Shi J, Chen J, Ning B. Reorganization of the brain in spinal cord injury:a meta-analysis of functional MRI studies[J]. Neuroradiology, 2019, 61:1309-1318. [20] Nicotra A, Critchley HD, Mathias CJ, Dolan RJ. Emotional and autonomic consequences of spinal cord injury explored using functional brain imaging[J]. Brain, 2006, 129(Pt 3):718-728. [21] Hughes BA, Crofton EJ, O'Buckley TK, Herman MA, Morrow AL. Chronic ethanol exposure alters prelimbic prefrontal cortical Fast-Spiking and Martinotti interneuron function with differential sex specificity in rat brain[J]. Neuropharmacology, 2020, 162:107805. [22] Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks[J]. Proc Natl Acad Sci USA, 2005, 102:9673-9678. [23] Guo Y, Ge Y, Li J, Dou W, Pan Y. Impact of injury duration on a sensorimotor functional network in complete spinal cord injury[J]. J Neurosci Res, 2022, 100:1765-1774. [24] Hou JM, Sun TS, Xiang ZM, Zhang JZ, Zhang ZC, Zhao M, Zhong JF, Liu J, Zhang H, Liu HL, Yan RB, Li HT. Alterations of resting-state regional and network-level neural function after acute spinal cord injury[J]. Neuroscience, 2014, 277:446-454. [25] Oni-Orisan A, Kaushal M, Li W, Leschke J, Ward BD, Vedantam A, Kalinosky B, Budde MD, Schmit BD, Li SJ, Muqeet V, Kurpad SN. Alterations in cortical sensorimotor connectivity following complete cervical spinal cord injury:a prospective resting-state fMRI study[J]. PLoS One, 2016, 11:e0150351. [26] Min YS, Park JW, Jin SU, Jang KE, Nam HU, Lee YS, Jung TD, Chang Y. Alteration of resting-state brain sensorimotor connectivity following spinal cord injury:a resting-state functional magnetic resonance imaging study[J]. J Neurotrauma, 2015, 32:1422-1427. [27] Zheng W, Wang L, Yang B, Chen Q, Hu Y, Du J, Li X, Chen X, Qin W, Li K, Lu J, Chen N. Cerebellum regulating cerebral functional cortex through multiple pathways in complete thoracolumbar spinal cord injury[J]. Front Neurosci, 2022, 16:914549. [28] Melo MC, Macedo DR, Soares AB. Divergent findings in brain reorganization after spinal cord injury:a review[J]. J Neuroimaging, 2020, 30:410-427. |