| 1 |
Report on Stroke Prevention and Treatment in China Writing Group . Brief report on stroke prevention and treatment in China, 2021. Zhongguo Nao Xue Guan Bing Za Zhi, 2023, 20: 783- 792.
|
|
《中国脑卒中防治报告2021》编写组. 《中国脑卒中防治报告2021》概要. 中国脑血管病杂志, 2023, 20: 783- 792.
|
| 2 |
Molteni F , Gasperini G , Cannaviello G , Guanziroli E . Exoskeleton and end-effector robots for upper and lower limbs rehabilitation: narrative review. PM R, 2018, 10 (9 Suppl 2): S174- S188.
|
| 3 |
Shi NQ , Liu GF , Zheng TJ , Li WS , Mai XM , Zhu YH , Zhao J . Research progress and clinical application of lower limb rehabilitation robot. Xin Xi Yu Kong Zhi, 2021, 50: 43- 53.
|
|
石男强, 刘刚峰, 郑天骄, 李文胜, 麦晓明, 朱延河, 赵杰. 下肢康复机器人的研究进展与临床应用. 信息与控制, 2021, 50: 43- 53.
|
| 4 |
Aprile I , Iacovelli C , Padua L , Galafate D , Criscuolo S , Gabbani D , Cruciani A , Germanotta M , Di Sipio E , De Pisi F , Franceschini M . Efficacy of robotic-assisted gait training in chronic stroke patients: preliminary results of an Italian bi-centre study. NeuroRehabilitation, 2017, 41: 775- 782.
|
| 5 |
Mazzoleni S , Focacci A , Franceschini M , Waldner A , Spagnuolo C , Battini E , Bonaiuti D . Robot-assisted end-effector-based gait training in chronic stroke patients: a multicentric uncontrolled observational retrospective clinical study. NeuroRehabilitation, 2017, 40: 483- 492.
|
| 6 |
Shin J , An H , Yang S , Park C , Lee Y , You SJH . Comparative effects of passive and active mode robot-assisted gait training on brain and muscular activities in sub-acute and chronic stroke. NeuroRehabilitation, 2022, 51: 51- 63.
|
| 7 |
Bao Y , Duo Q , Zhang YR , Chen S , Yang YA , Yin Y . The influence of lower limb rehabilitation robots on the walking function in the recovery period of ischemic stroke patients. Zhongguo Kang Fu Yi Xue Za Zhi, 2022, 37: 1079- 1083.
doi: 10.3969/j.issn.1001-1242.2022.08.012
|
|
包译, 朵强, 张源芮, 陈石, 杨颜安, 尹勇. 下肢康复机器人对缺血性脑卒中恢复期患者步行功能的影响. 中国康复医学杂志, 2022, 37: 1079- 1083.
doi: 10.3969/j.issn.1001-1242.2022.08.012
|
| 8 |
Yang YD , Chen ZH , Li XM , Liang ZY , Liang ZH , Li DM . Clinical study on the effect of Lokomat robot training duration on the improvement of walking function in stroke patients with hemiplegia. Zhongguo Kang Fu, 2023, 38: 707- 710.
|
|
杨宇德, 陈中华, 李锡民, 梁振宇, 梁镇宏, 李东梅. Lokomat机器人训练时长对脑卒中偏瘫患者步行功能提升效果的临床研究. 中国康复, 2023, 38: 707- 710.
|
| 9 |
Elmas BodurB , Erdoğanoğlu Y , Asena Sel S . Effects of robotic- assisted gait training on physical capacity, and quality of life among chronic stroke patients: a randomized controlled study. J Clin Neurosci, 2024, 120: 129- 137.
doi: 10.1016/j.jocn.2024.01.010
|
| 10 |
Sima ZF , Gong JQ , Wu YF . Lokomat training can significantly improve the walking ability of stroke survivors with lower limb spasm. Zhonghua Wu Li Yi Xue Yu Kang Fu Za Zhi, 2022, 44: 209- 213.
doi: 10.3760/cma.j.issn.0254-1424.2022.03.004
|
|
司马振奋, 龚剑秋, 吴月峰. Lokomat训练对脑卒中后下肢痉挛患者步行能力的影响. 中华物理医学与康复杂志, 2022, 44: 209- 213.
doi: 10.3760/cma.j.issn.0254-1424.2022.03.004
|
| 11 |
Hu JR , Chen XF . Influence of virtual reality combined with lower limb rehabilitation robot training on lower limb function and balance ability in patients with ischemic stroke. Zhongguo Kang Fu, 2020, 35: 633- 636.
|
|
胡靖然, 陈小飞. 虚拟现实技术联合下肢康复机器人训练对缺血性脑卒中患者下肢功能及平衡能力影响的研究. 中国康复, 2020, 35: 633- 636.
|
| 12 |
Bressi F , Cinnera AM , Morone G , Campagnola B , Cricenti L , Santacaterina F , Miccinilli S , Zollo L , Paolucci S , Di Lazzaro V , Sterzi S , Bravi M . Combining robot-assisted gait training and non- invasive brain stimulation in chronic stroke patients: a systematic review. Front Neurol, 2022, 13: 795788.
doi: 10.3389/fneur.2022.795788
|
| 13 |
Yang HE , Kyeong S , Lee SH , Lee WJ , Ha SW , Kim SM , Kang H , Lee WM , Kang CS , Kim DH . Structural and functional improvements due to robot-assisted gait training in the stroke-injured brain. Neurosci Lett, 2017, 637: 114- 119.
doi: 10.1016/j.neulet.2016.11.039
|
| 14 |
Kim DH , Kang CS , Kyeong S . Robot-assisted gait training promotes brain reorganization after stroke: a randomized controlled pilot study. NeuroRehabilitation, 2020, 46: 483- 489.
|
| 15 |
Chinese Society of Neurology , Chinese Stroke Society . Diagnostic criteria of cerebrovascular diseases in China (version 2019). Zhonghua Shen Jing Ke Za Zhi, 2019, 52: 710- 715.
doi: 10.3760/cma.j.issn.1006-7876.2019.09.003
|
|
中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国各类主要脑血管病诊断要点2019. 中华神经科杂志, 2019, 52: 710- 715.
doi: 10.3760/cma.j.issn.1006-7876.2019.09.003
|
| 16 |
Kwah LK , Diong J . National Institutes of Health Stroke Scale (NIHSS). J Physiother, 2014, 60: 61.
doi: 10.1016/j.jphys.2013.12.012
|
| 17 |
Gladstone DJ , Danells CJ , Black SE . The fugl-meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabil Neural Repair, 2002, 16: 232- 240.
doi: 10.1177/154596802401105171
|
| 18 |
Charthaigh AN , Doyle A . The Orpington Prognostic Score as a predictor of functional outcome following stroke as determined by the Modified Barthel Index. Physiother Pract Res, 2015, 37: 49- 56.
|
| 19 |
Yan CG , Wang XD , Zuo XN , Zang YF . DPABI: data processing & analysis for (resting-state) brain imaging. Neuroinformatics, 2016, 14: 339- 351.
doi: 10.1007/s12021-016-9299-4
|
| 20 |
Liao W , Li J , Ji GJ , Wu GR , Long Z , Xu Q , Duan X , Cui Q , Biswal BB , Chen H . Endless fluctuations: temporal dynamics of the amplitude of low frequency fluctuations. IEEE Trans Med Imaging, 2019, 38: 2523- 2532.
doi: 10.1109/TMI.2019.2904555
|
| 21 |
Dong F , Zhang Z , Chu T , Che K , Li Y , Gai Q , Shi Y , Ma H , Zhao F , Mao N , Xie H . Altered dynamic amplitude of low-frequency fluctuations in patients with postpartum depression. Behav Brain Res, 2022, 433: 113980.
doi: 10.1016/j.bbr.2022.113980
|
| 22 |
Xia M , Wang J , He Y . BrainNet Viewer: a network visualization tool for human brain connectomics. PLoS One, 2013, 8: e68910.
doi: 10.1371/journal.pone.0068910
|
| 23 |
Fan L , Li H , Zhuo J , Zhang Y , Wang J , Chen L , Yang Z , Chu C , Xie S , Laird AR , Fox PT , Eickhoff SB , Yu C , Jiang T . The human brainnetome atlas: a new brain atlas based on connectional architecture. Cereb Cortex, 2016, 26: 3508- 3526.
doi: 10.1093/cercor/bhw157
|
| 24 |
Rolls ET , Huang CC , Lin CP , Feng J , Joliot M . Automated anatomical labelling atlas 3. Neuroimage, 2020, 206: 116189.
doi: 10.1016/j.neuroimage.2019.116189
|
| 25 |
Yin Y , Gu Z , Yang B , Qin DD , Pan L , Gan L , Wang TH , Hu XT , Feng ZT . Effect of motor relearning program on regional cerebral blood flow (rCBF) of rhesus monkeys with cerebral ischemic stroke. Zhongguo Kang Fu, 2012, 27: 83- 85.
|
|
尹勇, 谷震, 杨波, 秦冬冬, 潘雷, 甘露, 王廷华, 胡新天, 冯忠堂. 运动再学习对猴脑缺血损伤后脑血流量的影响. 中国康复, 2012, 27: 83- 85.
|
| 26 |
Xing Y , Bai Y . A review of exercise-induced neuroplasticity in ischemic stroke: pathology and mechanisms. Mol Neurobiol, 2020, 57: 4218- 4231.
doi: 10.1007/s12035-020-02021-1
|
| 27 |
Li MX , Cao JY , Tang LB , Chen GQ , Yang GQ . Research progress on the neuroprotective mechanism of exercise therapy on cerebral hemorrhage. Xian Dai Yi Yao Wei Sheng, 2024, 40: 2282- 2286.
|
|
李明暇, 曹建洋, 汤鲁滨, 陈贵全, 杨国强. 运动疗法对脑出血神经保护作用机制的研究进展. 现代医药卫生, 2024, 40: 2282- 2286.
|
| 28 |
Dadario NB , Sughrue ME . The functional role of the precuneus. Brain, 2023, 146: 3598- 3607.
doi: 10.1093/brain/awad181
|
| 29 |
Yamaguchi A , Jitsuishi T . Structural connectivity of the precuneus and its relation to resting-state networks. Neurosci Res, 2024, 209: 9- 17.
doi: 10.1016/j.neures.2023.12.004
|
| 30 |
Palejwala AH , O'Connor KP , Pelargos P , Briggs RG , Milton CK , Conner AK , Milligan TM , O'Donoghue DL , Glenn CA , Sughrue ME . Anatomy and white matter connections of the lateral occipital cortex. Surg Radiol Anat, 2020, 42: 315- 328.
doi: 10.1007/s00276-019-02371-z
|
| 31 |
Koch G , Esposito R , Motta C , Casula EP , Di Lorenzo F , Bonnì S , Cinnera AM , Ponzo V , Maiella M , Picazio S , Assogna M , Sallustio F , Caltagirone C , Pellicciari MC . Improving visuo-motor learning with cerebellar theta burst stimulation: behavioral and neurophysiological evidence. Neuroimage, 2020, 208: 116424.
doi: 10.1016/j.neuroimage.2019.116424
|
| 32 |
Striemer CL , Chouinard PA , Goodale MA , de Ribaupierre S . Overlapping neural circuits for visual attention and eye movements in the human cerebellum. Neuropsychologia, 2015, 69: 9- 21.
doi: 10.1016/j.neuropsychologia.2015.01.024
|
| 33 |
Stoodley CJ , Valera EM , Schmahmann JD . Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage, 2012, 59: 1560- 1570.
doi: 10.1016/j.neuroimage.2011.08.065
|
| 34 |
E KH , Chen SH , Ho MH , Desmond JE . A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Hum Brain Mapp, 2014, 35: 593- 615.
doi: 10.1002/hbm.22194
|
| 35 |
Lien YR , Lin YC , Lin SN , Lin CP , Chang LH . Frequency-dependent effects of cerebellar repetitive transcranial magnetic stimulation on visuomotor accuracy. Front Neurosci, 2022, 16: 804027.
doi: 10.3389/fnins.2022.804027
|
| 36 |
Verdon V , Schwartz S , Lovblad KO , Hauert CA , Vuilleumier P . Neuroanatomy of hemispatial neglect and its functional components: a study using voxel-based lesion-symptom mapping. Brain, 2010, 133 (Pt 3): 880- 894.
|
| 37 |
Igelström KM , Graziano MSA . The inferior parietal lobule and temporoparietal junction: a network perspective. Neuropsychologia, 2017, 105: 70- 83.
doi: 10.1016/j.neuropsychologia.2017.01.001
|
| 38 |
Li X , Krol MA , Jahani S , Boas DA , Tager-Flusberg H , Yücel MA . Brain correlates of motor complexity during observed and executed actions. Sci Rep, 2020, 10: 10965.
doi: 10.1038/s41598-020-67327-5
|
| 39 |
Fogassi L , Luppino G . Motor functions of the parietal lobe. Curr Opin Neurobiol, 2005, 15: 626- 631.
doi: 10.1016/j.conb.2005.10.015
|
| 40 |
Bosco A , Sanz Diez P , Filippini M , De Vitis M , Fattori P . A focus on the multiple interfaces between action and perception and their neural correlates. Neuropsychologia, 2023, 191: 108722.
doi: 10.1016/j.neuropsychologia.2023.108722
|
| 41 |
Archer DB , Misra G , Patten C , Coombes SA . Microstructural properties of premotor pathways predict visuomotor performance in chronic stroke. Hum Brain Mapp, 2016, 37: 2039- 2054.
doi: 10.1002/hbm.23155
|
| 42 |
Oane I , Barborica A , Mindruta IR . Cingulate cortex: anatomy, structural and functional connectivity. J Clin Neurophysiol, 2023, 40: 482- 490.
doi: 10.1097/WNP.0000000000000970
|
| 43 |
Caruana F , Gerbella M , Avanzini P , Gozzo F , Pelliccia V , Mai R , Abdollahi RO , Cardinale F , Sartori I , Lo Russo G , Rizzolatti G . Motor and emotional behaviours elicited by electrical stimulation of the human cingulate cortex. Brain, 2018, 141: 3035- 3051.
doi: 10.1093/brain/awy219
|
| 44 |
Svoboda J , Lobellová V , Popelíková A , Ahuja N , Kelemen E , Stuchlík A . Transient inactivation of the anterior cingulate cortex in rats disrupts avoidance of a dynamic object. Neurobiol Learn Mem, 2017, 139: 144- 148.
doi: 10.1016/j.nlm.2017.01.003
|
| 45 |
Allen M . Unravelling the neurobiology of interoceptive inference. Trends Cogn Sci, 2020, 24: 265- 266.
doi: 10.1016/j.tics.2020.02.002
|
| 46 |
Zhang R , Deng H , Xiao X . The insular cortex: an interface between sensation, emotion and cognition. Neurosci Bull, 2024, 40: 1763- 1773.
doi: 10.1007/s12264-024-01211-4
|
| 47 |
Tisserand A , Philippi N , Botzung A , Blanc F . Me, myself and my insula: an oasis in the forefront of self-consciousness. Biology (Basel), 2023, 12: 599.
|
| 48 |
Uddin LQ , Nomi JS , Hébert-Seropian B , Ghaziri J , Boucher O . Structure and function of the human insula. J Clin Neurophysiol, 2017, 34: 300- 306.
doi: 10.1097/WNP.0000000000000377
|
| 49 |
Nakajima T , Hosaka R , Mushiake H . Complementary roles of primate dorsal premotor and pre-supplementary motor areas to the control of motor sequences. J Neurosci, 2022, 42: 6946- 6965.
doi: 10.1523/JNEUROSCI.2356-21.2022
|
| 50 |
Giordano N , Alia C , Fruzzetti L , Pasquini M , Palla G , Mazzoni A , Micera S , Fogassi L , Bonini L , Caleo M . Fast-spiking interneurons of the premotor cortex contribute to initiation and execution of spontaneous actions. J Neurosci, 2023, 43: 4234- 4250.
doi: 10.1523/JNEUROSCI.0750-22.2023
|
| 51 |
Takeuchi D , Roy D , Muralidhar S , Kawai T , Bari A , Lovett C , Sullivan HA , Wickersham IR , Tonegawa S . Cingulate-motor circuits update rule representations for sequential choice decisions. Nat Commun, 2022, 13: 4545.
|
| 52 |
Kim J , Wasserman EA , Castro L , Freeman JH . Anterior cingulate cortex inactivation impairs rodent visual selective attention and prospective memory. Behav Neurosci, 2016, 130: 75- 90.
|
| 53 |
Wang Y , Chen Z , Ma G , Wang L , Liu Y , Qin M , Fei X , Wu Y , Xu M , Zhang S . A frontal transcallosal inhibition loop mediates interhemispheric balance in visuospatial processing. Nat Commun, 2023, 14: 5213.
|
| 54 |
Schmidt KE . Equalizing transcallosal inhibition in the mouse anterior cingulate mitigates visuospatial neglect. Trends Neurosci, 2024, 47: 395- 397.
|