1 |
Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C, Barnholtz- Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2016-2020. Neuro Oncol, 2023, 25(12 Suppl 2): ⅳ1- ⅳ99.
|
2 |
Perry A, Stafford SL, Scheithauer BW, Suman VJ, Lohse CM. Meningioma grading: an analysis of histologic parameters. Am J Surg Pathol, 1997, 21: 1455- 1465.
doi: 10.1097/00000478-199712000-00008
|
3 |
Zhang J, Yao K, Liu P, Liu Z, Han T, Zhao Z, Cao Y, Zhang G, Zhang J, Tian J, Zhou J. A radiomics model for preoperative prediction of brain invasion in meningioma non-invasively based on MRI: a multicentre study. EBioMedicine, 2020, 58: 102933.
doi: 10.1016/j.ebiom.2020.102933
|
4 |
Hess K, Spille DC, Adeli A, Sporns PB, Brokinkel C, Grauer O, Mawrin C, Stummer W, Paulus W, Brokinkel B. Brain invasion and the risk of seizures in patients with meningioma. J Neurosurg, 2019, 130: 789- 796.
doi: 10.3171/2017.11.JNS172265
|
5 |
Hinrichs FL, Brokinkel C, Adeli A, Sporns PB, Hess K, Paulus W, Stummer W, Grauer O, Spille DC, Brokinkel B. Risk factors for preoperative seizures in intracranial meningiomas. J Neurosurg Sci, 2023, 67: 66- 72.
|
6 |
Brokinkel B, Sicking J, Spille DC, Hess K, Paulus W, Stummer W. Letter to the editor: brain invasion and the risk for postoperative hemorrhage and neurological deterioration after meningioma surgery. J Neurosurg, 2018, 129: 849- 851.
doi: 10.3171/2018.5.JNS181287
|
7 |
Banan R, Abbetmeier- Basse M, Hong B, Dumitru CA, Sahm F, Nakamura M, Krauss JK, Hartmann C. The prognostic significance of clinicopathological features in meningiomas: microscopic brain invasion can predict patient outcome in otherwise benign meningiomas. Neuropathol Appl Neurobiol, 2021, 47: 724- 735.
doi: 10.1111/nan.12700
|
8 |
Li HY, Ying YZ, Zheng D, Dong GH, Zhang GB, Liu XM, Lin S, Ren XH, Jiang ZL. Is brain invasion sufficient as a stand - alone criterion for grading atypical meningioma. ? J Neurosurg, 2023, 139: 953- 964.
doi: 10.3171/2023.2.JNS222751
|
9 |
Spille DC, Heß K, Sauerland C, Sanai N, Stummer W, Paulus W, Brokinkel B. Brain invasion in meningiomas: incidence and correlations with clinical variables and prognosis. World Neurosurg, 2016, 93: 346- 354.
doi: 10.1016/j.wneu.2016.06.055
|
10 |
Behling F, Fodi C, Gepfner-Tuma I, Machetanz K, Renovanz M, Skardelly M, Bornemann A, Honegger J, Tabatabai G, Tatagiba M, Schittenhelm J. CNS invasion in meningioma: how the intraoperative assessment can improve the prognostic evaluation of tumor recurrence. Cancers (Basel), 2020, 12: 3620.
doi: 10.3390/cancers12123620
|
11 |
Lambin P, Rios- Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, Zegers CM, Gillies R, Boellard R, Dekker A, Aerts HJ. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer, 2012, 48: 441- 446.
doi: 10.1016/j.ejca.2011.11.036
|
12 |
Yu J, Kong X, Xie D, Zheng F, Wang C, Shi D, He C, Liang X, Xu H, Li S, Chen X. Multiparameter MRI - based radiomics nomogram for preoperative prediction of brain invasion in atypical meningioma: a multicentre study. BMC Med Imaging, 2024, 24: 134.
doi: 10.1186/s12880-024-01294-5
|
13 |
Joo L, Park JE, Park SY, Nam SJ, Kim YH, Kim JH, Kim HS. Extensive peritumoral edema and brain - to - tumor interface MRI features enable prediction of brain invasion in meningioma: development and validation. Neuro Oncol, 2021, 23: 324- 333.
doi: 10.1093/neuonc/noaa190
|
14 |
Xiao D, Zhao Z, Liu J, Wang X, Fu P, Le Grange JM, Wang J, Guo X, Zhao H, Shi J, Yan P, Jiang X. Diagnosis of invasive meningioma based on brain - tumor interface radiomics features on brain MR images: a multicenter study. Front Oncol, 2021, 11: 708040.
doi: 10.3389/fonc.2021.708040
|
15 |
Isensee F, Schell M, Pflueger I, Brugnara G, Bonekamp D, Neuberger U, Wick A, Schlemmer HP, Heiland S, Wick W, Bendszus M, Maier-Hein KH, Kickingereder P. Automated brain extraction of multisequence MRI using artificial neural networks. Hum Brain Mapp, 2019, 40: 4952- 4964.
doi: 10.1002/hbm.24750
|
16 |
Shinohara RT, Sweeney EM, Goldsmith J, Shiee N, Mateen FJ, Calabresi PA, Jarso S, Pham DL, Reich DS, Crainiceanu CM; Australian Imaging Biomarkers Lifestyle Flagship Study of Ageing, Alzheimer's Disease Neuroimaging Initiative. Statistical normalization techniques for magnetic resonance imaging. Neuroimage Clin, 2014, 6: 9- 19.
doi: 10.1016/j.nicl.2014.08.008
|
17 |
Brokinkel B, Hess K, Mawrin C. Brain invasion in meningiomas: clinical considerations and impact of neuropathological evaluation. A systematic review. Neuro Oncol, 2017, 19: 1298- 1307.
doi: 10.1093/neuonc/nox071
|
18 |
Ni Y, Zhang F, Zhang Y, Lin JZ. Analysis of the relationship between neurovascular compression and primary trigeminal neuralgia based on radiomics. Zhongguo Xian Dai Shen Jing Ji Bing Za Zhi, 2024, 24: 668- 673.
doi: 10.3969/j.issn.1672-6731.2024.08.011
|
|
倪洋, 张昉, 张勇, 林劲芝. 基于影像组学的神经血管压迫与原发性三叉神经痛关系探讨. 中国现代神经疾病杂志, 2024, 24: 668- 673.
doi: 10.3969/j.issn.1672-6731.2024.08.011
|
19 |
Feng M, Zheng XQ, Wang RZ. The application of medical big data in central nervous system diseases. Zhongguo Xian Dai Shen Jing Ji Bing Za Zhi, 2021, 21: 128- 131.
doi: 10.3969/j.issn.1672-6731.2021.03.002
|
|
冯铭, 郑雪晴, 王任直. 医疗大数据在神经系统疾病中的应用. 中国现代神经疾病杂志, 2021, 21: 128- 131.
doi: 10.3969/j.issn.1672-6731.2021.03.002
|
20 |
Zhao Z, Nie C, Zhao L, Xiao D, Zheng J, Zhang H, Yan P, Jiang X, Zhao H. Multi -parametric MRI-based machine learning model for prediction of WHO grading in patients with meningiomas. Eur Radiol, 2024, 34: 2468- 2479.
|
21 |
Wang Y, Lang J, Zuo JZ, Dong Y, Hu Z, Xu X, Zhang Y, Wang Q, Yang L, Wong STC, Wang H, Li H. The radiomic - clinical model using the SHAP method for assessing the treatment response of whole - brain radiotherapy: a multicentric study. Eur Radiol, 2022, 32: 8737- 8747.
doi: 10.1007/s00330-022-08887-0
|
22 |
Ma X, Qian X, Wang Q, Zhang Y, Zong R, Zhang J, Qian B, Yang C, Lu X, Shi Y. Radiomics nomogram based on optimal VOI of multi - sequence MRI for predicting microvascular invasion in intrahepatic cholangiocarcinoma. Radiol Med, 2023, 128: 1296- 1309.
doi: 10.1007/s11547-023-01704-8
|
23 |
Tixier F, Um H, Bermudez D, Iyer A, Apte A, Graham MS, Nevel KS, Deasy JO, Young RJ, Veeraraghavan H. Preoperative MRI - radiomics features improve prediction of survival in glioblastoma patients over MGMT methylation status alone. Oncotarget, 2019, 10: 660- 672.
doi: 10.18632/oncotarget.26578
|
24 |
Beig N, Bera K, Prasanna P, Antunes J, Correa R, Singh S, Saeed Bamashmos A, Ismail M, Braman N, Verma R, Hill VB, Statsevych V, Ahluwalia MS, Varadan V, Madabhushi A, Tiwari P. Radiogenomic - based survival risk stratification of tumor habitat on Gd - T1W MRI is associated with biological processes in glioblastoma. Clin Cancer Res, 2020, 26: 1866- 1876.
doi: 10.1158/1078-0432.CCR-19-2556
|