1 |
Zhang XQ , Yang YX , Zhang C , Leng XY , Chen SD , Ou YN , Kuo K , Cheng X , Han X , Cui M , Tan L , Feng L , Suckling J , Dong Q , Yu JT . Validation of external and internal exposome of the findings associated to cerebral small vessel disease: a Mendelian randomization study. J Cereb Blood Flow Metab, 2022, 42: 1078- 1090.
doi: 10.1177/0271678X221074223
|
2 |
Duering M , Biessels GJ , Brodtmann A , Chen C , Cordonnier C , de Leeuw FE , Debette S , Frayne R , Jouvent E , Rost NS , Ter Telgte A , Al-Shahi Salman R , Backes WH , Bae HJ , Brown R , Chabriat H , De Luca A , deCarli C , Dewenter A , Doubal FN , Ewers M , Field TS , Ganesh A , Greenberg S , Helmer KG , Hilal S , Jochems ACC , Jokinen H , Kuijf H , Lam BYK , Lebenberg J , MacIntosh BJ , Maillard P , Mok VCT , Pantoni L , Rudilosso S , Satizabal CL , Schirmer MD , Schmidt R , Smith C , Staals J , Thrippleton MJ , van Veluw SJ , Vemuri P , Wang Y , Werring D , Zedde M , Akinyemi RO , Del Brutto OH , Markus HS , Zhu YC , Smith EE , Dichgans M , Wardlaw JM . Neuroimaging standards for research into small vessel disease: advances since 2013. Lancet Neurol, 2023, 22: 602- 618.
doi: 10.1016/S1474-4422(23)00131-X
|
3 |
van den Brink H , Doubal FN , Duering M . Advanced MRI in cerebral small vessel disease. Int J Stroke, 2023, 18: 28- 35.
doi: 10.1177/17474930221091879
|
4 |
Safri AA , Nassir CMNCM , Iman IN , Mohd Taib NH , Achuthan A , Mustapha M . Diffusion tensor imaging pipeline measures of cerebral white matter integrity: an overview of recent advances and prospects. World J Clin Cases, 2022, 10: 8450- 8462.
doi: 10.12998/wjcc.v10.i24.8450
|
5 |
Zanon Zotin MC , Sveikata L , Viswanathan A , Yilmaz P . Cerebral small vessel disease and vascular cognitive impairment: from diagnosis to management. Curr Opin Neurol, 2021, 34: 246- 257.
doi: 10.1097/WCO.0000000000000913
|
6 |
Raja R , Rosenberg G , Caprihan A . Review of diffusion MRI studies in chronic white matter diseases. Neurosci Lett, 2019, 694: 198- 207.
doi: 10.1016/j.neulet.2018.12.007
|
7 |
Finsterwalder S , Vlegels N , Gesierich B , Araque Caballero MÁ , Weaver NA , Franzmeier N , Georgakis MK , Konieczny MJ , Koek HL , Dominantly Inherited Alzheimer Network (DIAN) , Karch CM , Graff-Radford NR , Salloway S , Oh H , Allegri RF , Chhatwal JP , DELCODE Study Group , Jessen F , Düzel E , Dobisch L , Metzger C , Peters O , Incesoy EI , Priller J , Spruth EJ , Schneider A , Flieβbach K , Buerger K , Janowitz D , Teipel SJ , Kilimann I , Laske C , Buchmann M , Heneka MT , Brosseron F , Spottke A , Roy N , Ertl-Wagner B , Scheffler K , Alzheimer's Disease Neuroimaging Initiative (ADNI) , Utrecht VCI Study Group , Seo SW , Kim Y , Na DL , Kim HJ , Jang H , Ewers M , Levin J , Schmidt R , Pasternak O , Dichgans M , Biessels GJ , Duering M . Small vessel disease more than Alzheimer's disease determines diffusion MRI alterations in memory clinic patients. Alzheimers Dement, 2020, 16: 1504- 1514.
doi: 10.1002/alz.12150
|
8 |
Boot EM , Mc van Leijsen E , Bergkamp MI , Kessels RPC , Norris DG , de Leeuw FE , Tuladhar AM . Structural network efficiency predicts cognitive decline in cerebral small vessel disease. Neuroimage Clin, 2020, 27: 102325.
doi: 10.1016/j.nicl.2020.102325
|
9 |
Zanon Zotin MC , Yilmaz P , Sveikata L , Schoemaker D , van Veluw SJ , Etherton MR , Charidimou A , Greenberg SM , Duering M , Viswanathan A . Peak width of skeletonized mean diffusivity: a neuroimaging marker for white matter injury. Radiology, 2023, 306: e212780.
doi: 10.1148/radiol.212780
|
10 |
Low A , Mak E , Stefaniak JD , Malpetti M , Nicastro N , Savulich G , Chouliaras L , Markus HS , Rowe JB , O'Brien JT . Peak width of skeletonized mean diffusivity as a marker of diffuse cerebrovascular damage. Front Neurosci, 2020, 14: 238.
doi: 10.3389/fnins.2020.00238
|
11 |
Petersen M , Frey BM , Schlemm E , Mayer C , Hanning U , Engelke K , Fiehler J , Borof K , Jagodzinski A , Gerloff C , Thomalla G , Cheng B . Network localisation of white matter damage in cerebral small vessel disease. Sci Rep, 2020, 10: 9210.
doi: 10.1038/s41598-020-66013-w
|
12 |
Raposo N , Zanon Zotin MC , Schoemaker D , Xiong L , Fotiadis P , Charidimou A , Pasi M , Boulouis G , Schwab K , Schirmer MD , Etherton MR , Gurol ME , Greenberg SM , Duering M , Viswanathan A . Peak width of skeletonized mean diffusivity as neuroimaging biomarker in cerebral amyloid angiopathy. AJNR Am J Neuroradiol, 2021, 42: 875- 881.
doi: 10.3174/ajnr.A7042
|
13 |
McCreary CR , Beaudin AE , Subotic A , Zwiers AM , Alvarez A , Charlton A , Goodyear BG , Frayne R , Smith EE . Cross-sectional and longitudinal differences in peak skeletonized white matter mean diffusivity in cerebral amyloid angiopathy. Neuroimage Clin, 2020, 27: 102280.
doi: 10.1016/j.nicl.2020.102280
|
14 |
Egle M , Hilal S , Tuladhar AM , Pirpamer L , Bell S , Hofer E , Duering M , Wason J , Morris RG , Dichgans M , Schmidt R , Tozer DJ , Barrick TR , Chen C , de Leeuw FE , Markus HS . Determining the OPTIMAL DTI analysis method for application in cerebral small vessel disease. Neuroimage Clin, 2022, 35: 103114.
doi: 10.1016/j.nicl.2022.103114
|
15 |
Egle M , Hilal S , Tuladhar AM , Pirpamer L , Hofer E , Duering M , Wason J , Morris RG , Dichgans M , Schmidt R , Tozer D , Chen C , de Leeuw FE , Markus HS . Prediction of dementia using diffusion tensor MRI measures: the OPTIMAL collaboration. J Neurol Neurosurg Psychiatry, 2022, 93: 14- 23.
doi: 10.1136/jnnp-2021-326571
|
16 |
da Silva PHR , Paschoal AM , Secchinatto KF , Zotin MCZ , Dos Santos AC , Viswanathan A , Pontes-Neto OM , Leoni RF . Contrast agent-free state-of-the-art magnetic resonance imaging on cerebral small vessel disease. Part 2:diffusion tensor imaging and functional magnetic resonance imaging. NMR Biomed, 2022, 35: e4743.
doi: 10.1002/nbm.4743
|
17 |
Sun Y , Hu Y , Qiu Y , Zhang Y , Jiang C , Lu P , Xu Q , Shi Y , Wei H , Zhou Y . Characterization of white matter over 1-2 years in small vessel disease using MR-based quantitative susceptibility mapping and free-water mapping. Front Aging Neurosci, 2022, 14: 998051.
doi: 10.3389/fnagi.2022.998051
|
18 |
Tuladhar AM , Tay J , van Leijsen E , Lawrence AJ , van Uden IWM , Bergkamp M , van der Holst E , Kessels RPC , Norris D , Markus HS , De Leeuw FE . Structural network changes in cerebral small vessel disease. J Neurol Neurosurg Psychiatry, 2020, 91: 196- 203.
doi: 10.1136/jnnp-2019-321767
|
19 |
Chagnot A , Barnes SR , Montagne A . Magnetic resonance imaging of blood-brain barrier permeability in dementia. Neuroscience, 2021, 474: 14- 29.
doi: 10.1016/j.neuroscience.2021.08.003
|
20 |
Stringer MS , Heye AK , Armitage PA , Chappell F , Valdés Hernández MDC , Makin SDJ , Sakka E , Thrippleton MJ , Wardlaw JM . Tracer kinetic assessment of blood-brain barrier leakage and blood volume in cerebral small vessel disease: associations with disease burden and vascular risk factors. Neuroimage Clin, 2021, 32: 102883.
doi: 10.1016/j.nicl.2021.102883
|
21 |
Kerkhofs D , Wong SM , Zhang E , Uiterwijk R , Hoff EI , Jansen JFA , Staals J , Backes WH , van Oostenbrugge RJ . Blood-brain barrier leakage at baseline and cognitive decline in cerebral small vessel disease: a 2-year follow-up study. Geroscience, 2021, 43: 1643- 1652.
doi: 10.1007/s11357-021-00399-x
|
22 |
Raimondo L , Oliveira ĹAF , Heij J , Priovoulos N , Kundu P , Leoni RF , van der Zwaag W . Advances in resting state fMRI acquisitions for functional connectomics. Neuroimage, 2021, 243: 118503.
doi: 10.1016/j.neuroimage.2021.118503
|
23 |
Feng M , Wen H , Xin H , Zhang N , Liang C , Guo L . Altered spontaneous brain activity related to neurologic dysfunction in patients with cerebral small vessel disease. Front Aging Neurosci, 2021, 13: 731585.
doi: 10.3389/fnagi.2021.731585
|
24 |
Blair GW , Thrippleton MJ , Shi Y , Hamilton I , Stringer M , Chappell F , Dickie DA , Andrews P , Marshall I , Doubal FN , Wardlaw JM . Intracranial hemodynamic relationships in patients with cerebral small vessel disease. Neurology, 2020, 94: e2258- e2269.
doi: 10.1212/WNL.0000000000009483
|
25 |
Clancy U , Garcia DJ , Stringer MS , Thrippleton MJ , Valdés-Hernández MC , Wiseman S , Hamilton OK , Chappell FM , Brown R , Blair GW , Hewins W , Sleight E , Ballerini L , Bastin ME , Maniega SM , MacGillivray T , Hetherington K , Hamid C , Arteaga C , Morgan AG , Manning C , Backhouse E , Hamilton I , Job D , Marshall I , Doubal FN , Wardlaw JM . Rationale and design of a longitudinal study of cerebral small vessel diseases, clinical and imaging outcomes in patients presenting with mild ischaemic stroke: Mild Stroke Study 3. Eur Stroke J, 2021, 6: 81- 88.
doi: 10.1177/2396987320929617
|
26 |
Blair GW , Janssen E , Stringer MS , Thrippleton MJ , Chappell F , Shi Y , Hamilton I , Flaherty K , Appleton JP , Doubal FN , Bath PM , Wardlaw JM . Effects of cilostazol and isosorbide mononitrate on cerebral hemodynamics in the LACI-1 randomized controlled trial. Stroke, 2022, 53: 29- 33.
doi: 10.1161/STROKEAHA.121.034866
|
27 |
Zhou X , Zhang C , Li L , Zhang Y , Zhang W , Yin W , Yu X , Zhu X , Qian Y , Sun Z . Altered brain function in cerebral small vessel disease patients with gait disorders: a resting-state functional MRI study. Front Aging Neurosci, 2020, 12: 234.
doi: 10.3389/fnagi.2020.00234
|
28 |
Cao S , Nie J , Zhang J , Chen C , Wang X , Liu Y , Mo Y , Du B , Hu Y , Tian Y , Wei Q , Wang K . The cerebellum is related to cognitive dysfunction in white matter hyperintensities. Front Aging Neurosci, 2021, 13: 670463.
doi: 10.3389/fnagi.2021.670463
|
29 |
Yu C , Lu W , Qiu J , Wang F , Li J , Wang L . Alterations of the whole cerebral blood flow in patients with different total cerebral small vessel disease burden. Front Aging Neurosci, 2020, 12: 175.
doi: 10.3389/fnagi.2020.00175
|
30 |
Chen X , Lu D , Guo N , Kang Z , Zhang K , Wang J , Men X , Lu Z , Qiu W . Left ventricular ejection fraction and right atrial diameter are associated with deep regional CBF in arteriosclerotic cerebral small vessel disease. BMC Neurol, 2021, 21: 67.
doi: 10.1186/s12883-021-02096-w
|
31 |
Bauer CE , Zachariou V , Seago E , Gold BT . White matter hyperintensity volume and location: associations with WM microstructure, brain iron, and cerebral perfusion. Front Aging Neurosci, 2021, 13: 617947.
doi: 10.3389/fnagi.2021.617947
|
32 |
Jann K , Shao X , Ma SJ , Cen SY , D'Orazio L , Barisano G , Yan L , Casey M , Lamas J , Staffaroni AM , Kramer JH , Ringman JM , Wang DJJ . Evaluation of cerebral blood flow measured by 3D PCASL as biomarker of vascular cognitive impairment and dementia (VCID) in a cohort of elderly Latinx subjects at risk of small vessel disease. Front Neurosci, 2021, 15: 627627.
doi: 10.3389/fnins.2021.627627
|
33 |
Moreton FC , Cullen B , Dickie DA , Lopez Gonzalez R , Santosh C , Delles C , Muir KW . Brain imaging factors associated with progression of subcortical hyperintensities in CADASIL over 2-year follow-up. Eur J Neurol, 2021, 28: 220- 228.
doi: 10.1111/ene.14534
|
34 |
Shao X , Ma SJ , Casey M , D'Orazio L , Ringman JM , Wang DJJ . Mapping water exchange across the blood - brain barrier using 3D diffusion - prepared arterial spin labeled perfusion MRI. Magn Reson Med, 2019, 81: 3065- 3079.
doi: 10.1002/mrm.27632
|
35 |
Zhao MY , Fan AP , Chen DY , Ishii Y , Khalighi M , Steinberg GK , Zaharchuk G . Using arterial spin labeling to measure cerebrovascular reactivity in Moyamoya insights from simultaneous PET/MRI. J Cereb Blood Flow Metab, 2022, 42: 1493- 1506.
doi: 10.1177/0271678X221083471
|
36 |
Fan H , Su P , Huang J , Liu P , Lu H . Multi-band MR fingerprinting (MRF) ASL imaging using artificial-network trained with high-fidelity experimental data. Magn Reson Med, 2021, 85: 1974- 1985.
doi: 10.1002/mrm.28560
|
37 |
Lahiri A , Fessler JA , Hernandez-Garcia L . Optimizing MRF-ASL scan design for precise quantification of brain hemodynamics using neural network regression. Magn Reson Med, 2020, 83: 1979- 1991.
doi: 10.1002/mrm.28051
|
38 |
Lu W , Yu C , Wang L , Wang F , Qiu J . Perfusion of cerebral small vessel disease revealed via arterial spin labeling MRI and machine learning. Neuroimage Clin, 2022, 36: 103165.
doi: 10.1016/j.nicl.2022.103165
|
39 |
Le Bihan D , Breton E , Lallemand Laval-Jeantet M . MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic. Radiology, 1986, 161: 401- 407.
doi: 10.1148/radiology.161.2.3763909
|
40 |
Paschoal AM , Secchinatto KF , da Silva PHR , Zotin MCZ , Dos Santos AC , Viswanathan A , Pontes-Neto OM , Leoni RF . Contrast-agent-free state-of-the-art MRI on cerebral small vessel disease. Part 1:ASL, IVIM, and CVR. NMR Biomed, 2022, 35: e4742.
doi: 10.1002/nbm.4742
|
41 |
Wong SM , Backes WH , Drenthen GS , Zhang CE , Voorter PHM , Staals J , van Oostenbrugge RJ , Jansen JFA . Spectral diffusion analysis of intravoxel incoherent motion MRI in cerebral small vessel disease. J Magn Reson Imaging, 2020, 51: 1170- 1180.
doi: 10.1002/jmri.26920
|
42 |
Kerkhofs D , Wong SM , Zhang E , Staals J , Jansen JFA , van Oostenbrugge RJ , Backes WH . Baseline blood-brain barrier leakage and longitudinal microstructural tissue damage in the periphery of white matter hyperintensities. Neurology, 2021, 96: e2192- e2200.
doi: 10.1212/WNL.0000000000011783
|
43 |
Huo Y , Wang Y , Guo C , Liu Q , Shan L , Liu M , Wu H , Li G , Lv H , Lu L , Zhou Y , Feng J , Han Y . Deep white matter hyperintensity is spatially correlated to MRI-visible perivascular spaces in cerebral small vessel disease on 7 Tesla MRI. Stroke Vasc Neurol, 2023, 8: 144- 150.
doi: 10.1136/svn-2022-001611
|
44 |
Kang CK , Park CA , Park CW , Lee YB , Cho ZH , Kim YB . Lenticulostriate arteries in chronic stroke patients visualised by 7T magnetic resonance angiography. Int J Stroke, 2010, 5: 374- 380.
doi: 10.1111/j.1747-4949.2010.00464.x
|
45 |
Sun C , Wu Y , Ling C , Xie Z , Sun Y , Xie Z , Li Z , Fang X , Kong Q , An J , Wang B , Zhuo Y , Zhang W , Wang Z , Yuan Y , Zhang Z . Reduced blood flow velocity in lenticulostriate arteries of patients with CADASIL assessed by PC - MRA at 7T. J Neurol Neurosurg Psychiatry, 2022, 93: 451- 452.
doi: 10.1136/jnnp-2021-326258
|
46 |
Geurts LJ , Zwanenburg JJM , Klijn CJM , Luijten GJ . Higher pulsatility in cerebral perforating arteries in patients with small vessel disease related stroke, a 7T MRI study. Stroke, 2019, 50: 62- 68.
doi: 10.1161/STROKEAHA.118.022516
|
47 |
Arts T , Meijs TA , Grotenhuis H , Voskuil M , Siero J , G J , Zwanenburg J . Velocity and pulsatility measures in the perforating arteries of the basal ganglia at 3T MRI in reference to 7T MRI. Front Neurosci, 2021, 15: 665480.
doi: 10.3389/fnins.2021.665480
|
48 |
Zhou H , Gao F , Yang X , Lin T , Li Z , Wang Q , Yao Y , Li L , Ding X , Shi K , Liu Q , Bao H , Long Z , Wu Z , Vassar R , Cheng X , Li R , Shen Y . Endothelial BACE1 impairs cerebral small vessels via tight junctions and eNOS. Circ Res, 2022, 130: 1321- 1341.
doi: 10.1161/CIRCRESAHA.121.320183
|
49 |
Walsh J , Tozer DJ , Sari H , Hong YT , Drazyk A , Williams G , Shah NJ , O'Brien JT , Aigbirhio FI , Rosenberg G , Fryer TD , Markus HS . Microglial activation and blood-brain barrier permeability in cerebral small vessel disease. Brain, 2021, 144: 1361- 1371.
doi: 10.1093/brain/awab003
|
50 |
Yang Q , Wei X , Deng B , Chang Z , Jin D , Huang Y , Zhang JH , Yenari MA , Jin K , Wang Q . Cerebral small vessel disease alters neurovascular unit regulation of microcirculation integrity involved in vascular cognitive impairment. Neurobiol Dis, 2022, 170: 105750.
doi: 10.1016/j.nbd.2022.105750
|
51 |
Gao Y , Li D , Lin J , Thomas AM , Miao J , Chen D , Li S , Chu C . Cerebral small vessel disease: pathological mechanisms and potential therapeutic targets. Front Aging Neurosci, 2022, 14: 961661.
doi: 10.3389/fnagi.2022.961661
|
52 |
Quick S , Moss J , Rajani RM , Williams A . A vessel for change: endothelial dysfunction in cerebral small vessel disease. Trends Neurosci, 2021, 44: 289- 305.
doi: 10.1016/j.tins.2020.11.003
|
53 |
Zhang DP , Peng YF , Zhang HL , Ma JG , Zhao M , Yin TT . Basilar artery tortuosity is associated with white matter hyperintensities by TIMP-1. Front Neurosci, 2019, 13: 836.
doi: 10.3389/fnins.2019.00836
|
54 |
El Husseini N , Bushnell C , Brown CM , Attix D , Rost NS , Samsa GP , Colton CA , Goldstein LB . Vascular cellular adhesion molecule - 1 (VCAM - 1) and memory impairment in African - Americans after small vessel - type stroke. J Stroke Cerebrovasc Dis, 2020, 29: 104646.
doi: 10.1016/j.jstrokecerebrovasdis.2020.104646
|
55 |
Sun W , Luo Y , Zhang S , Lu W , Liu L , Yang X , Wu D . The relationship between ADAMTS13 activity and overall cerebral small vessel disease burden: a cross-sectional study CSVD. Front Aging Neurosci, 2021, 13: 738359.
doi: 10.3389/fnagi.2021.738359
|
56 |
Esse R , Barroso M , Tavares de Almeida I , Castro R . The contribution of homocysteine metabolism disruption to endothelial dysfunction: state-of-the-art. Int J Mol Sci, 2019, 20: 867.
doi: 10.3390/ijms20040867
|
57 |
Nam KW , Kwon HM , Jeong HY , Park JH , Kwon H , Jeong SM . Serum homocysteine level is related to cerebral small vessel disease in a healthy population. Neurology, 2019, 92: e317- e325.
doi: 10.1212/WNL.0000000000006816
|
58 |
Cao Y , Su N , Zhang D , Zhou L , Yao M , Zhang S , Cui L , Zhu Y , Ni J . Correlation between total homocysteine and cerebral small vessel disease: a Mendelian randomization study. Eur J Neurol, 2021, 28: 1931- 1938.
doi: 10.1111/ene.14708
|
59 |
Roig - Carles D , Willms E , Fontijn RD , Martinez - Pacheco S , Mäger I , de Vries HE , Hirst M , Sharrack B , Male DK , Hawkes CA , Romero IA . Endothelial - derived extracellular vesicles induce cerebrovascular dysfunction in inflammation. Pharmaceutics, 2021, 13: 1525.
doi: 10.3390/pharmaceutics13091525
|
60 |
Abner EL , Elahi FM , Jicha GA , Mustapic Kramer JH , Kapogiannis D , Goetzl EJ . Endothelial-derived plasma exosome proteins in Alzheimer's disease angiopathy. FASEB J, 2020, 34: 5967- 5974.
doi: 10.1096/fj.202000034R
|
61 |
Low A , Mak E , Rowe JB , Markus HS , O'Brien JT . Inflammation and cerebral small vessel disease: a systematic review. Ageing Res Rev, 2019, 53: 100916.
doi: 10.1016/j.arr.2019.100916
|
62 |
Zhang DD , Cao Y , Mu JY , Liu YM , Gao F , Han F , Zhai FF , Zhou LX , Ni J , Yao M , Li ML , Jin ZY , Zhang SY , Cui LY , Shen Y , Zhu YC . Inflammatory biomarkers and cerebral small vessel disease: a community-based cohort study. Stroke Vasc Neurol, 2022, 7: 302- 309.
doi: 10.1136/svn-2021-001102
|
63 |
Zhu S , Wei X , Yang X , Huang Z , Chang Z , Xie F , Yang Q , Ding C , Xiang W , Yang H , Xia Y , Feng ZP , Sun HS , Yenari MA , Shi L , Mok VC , Wang Q . Plasma lipoprotein-associated phospholipase A2 and superoxide dismutase are independent predicators of cognitive impairment in cerebral small vessel disease patients: diagnosis and assessment. Aging Dis, 2019, 10: 834- 846.
doi: 10.14336/AD.2019.0304
|
64 |
Liu L , Zhang X , Jiang N , Liu Y , Wang Q , Jiang G , Li X , Zhao L , Zhai Q . Plasma lipoprotein-associated phospholipase A2 affects cognitive impairment in patients with cerebral microbleeds. Neuropsychiatr Dis Treat, 2023, 19: 635- 646.
doi: 10.2147/NDT.S401603
|
65 |
Egle M , Loubiere L , Maceski A , Kuhle J , Peters N , Markus HS . Neurofilament light chain predicts future dementia risk in cerebral small vessel disease. J Neurol Neurosurg Psychiatry, 2021, 92: 582- 589.
doi: 10.1136/jnnp-2020-325681
|
66 |
Peters N , van Leijsen E , Tuladhar AM , Barro C , Konieczny MJ , Ewers M , Lyrer P , Engelter ST , Kuhle J , Duering M , de Leeuw FE . Serum neurofilament light chain Is associated with incident lacunes in progressive cerebral small vessel disease. J Stroke, 2020, 22: 369- 376.
doi: 10.5853/jos.2019.02845
|
67 |
Qu Y , Tan CC , Shen XN , Li HQ , Cui M , Tan L , Dong Q , Yu JT , Alzheimer's Disease Neuroimaging Initiative . Association of plasma neurofilament light with small vessel disease burden in nondemented elderly: a longitudinal study. Stroke, 2021, 52: 896- 904.
doi: 10.1161/STROKEAHA.120.030302
|
68 |
Liu X , Sun P , Yang J , Fan Y . Biomarkers involved in the pathogenesis of cerebral small-vessel disease. Front Neurol, 2022, 13: 969185.
doi: 10.3389/fneur.2022.969185
|
69 |
Wang XL , Han K . The changes of amino acid levels and fatty acid levels in blood of cerebral small vascular disease patients. Zu Zhong Yu Shen Jing Ji Bing, 2020, 27: 609- 613.
doi: 10.3969/j.issn.1007-0478.2020.05.011
|
|
王秀莉, 韩锟. 脑小血管病患者血液氨基酸谱和脂肪酸谱变化. 卒中与神经疾病, 2020, 27: 609- 613.
doi: 10.3969/j.issn.1007-0478.2020.05.011
|
70 |
Wada M , Nagasawa H , Kurita K , Koyama S , Arawaka S , Kawanami T , Tajima K , Daimon M , Kato T . Microalbuminuria is a risk factor for cerebral small vessel disease in community-based elderly subjects. J Neurol Sci, 2007, 255: 27- 34.
doi: 10.1016/j.jns.2007.01.066
|
71 |
Tang X , Han YP , Chai YH , Gong HJ , Xu H , Patel I , Qiao YS , Zhang JY , Cardoso MA , Zhou JB . Association of kidney function and brain health: a systematic review and meta-analysis of cohort studies. Ageing Res Rev, 2022, 82: 101762.
doi: 10.1016/j.arr.2022.101762
|
72 |
Georgakis MK , Chatzopoulou D , Tsivgoulis G , Petridou ET . Albuminuria and cerebral small vessel disease: a systematic review and meta-analysis. J Am Geriatr Soc, 2018, 66: 509- 517.
doi: 10.1111/jgs.15240
|
73 |
Horn JW , Romundstad S , Ellekjær H , Janszky I , Horn J . Low grade albuminuria as a risk factor for subtypes of stroke: the HUNT study in Norway. BMC Neurol, 2020, 20: 170.
doi: 10.1186/s12883-020-01746-9
|
74 |
Rutsch A , Kantsjö JB , Ronchi F . The gut-brain axis: how microbiota and host inflammasome influence brain physiology and pathology. Front Immunol, 2020, 11: 604179.
doi: 10.3389/fimmu.2020.604179
|
75 |
Durgan DJ , Lee J , McCullough LD , Bryan RM Jr . Examining the role of the microbiota-gut-brain axis in stroke. Stroke, 2019, 50: 2270- 2277.
doi: 10.1161/STROKEAHA.119.025140
|
76 |
Sanchez-Rodriguez E , Egea-Zorrilla A , Plaza-Díaz J , Aragón-Vela J , Muñoz-Quezada S , Tercedor-Sánchez L , Abadia-Molina F . The gut microbiota and its implication in the development of atherosclerosis and related cardiovascular diseases. Nutrients, 2020, 12: 605.
doi: 10.3390/nu12030605
|
77 |
Nelson JW , Phillips SC , Ganesh BP , Petrosino JF , Durgan DJ , Bryan RM . The gut microbiome contributes to blood-brain barrier disruption in spontaneously hypertensive stroke prone rats. FASEB J, 2021, 35: e21201.
|
78 |
Saji N , Murotani K , Hisada T , Tsuduki T , Sugimoto T , Kimura A , Niida S , Toba K , Sakurai T . The association between cerebral small vessel disease and the gut microbiome: a cross-sectional analysis. J Stroke Cerebrovasc Dis, 2021, 30: 105568.
doi: 10.1016/j.jstrokecerebrovasdis.2020.105568
|
79 |
Cai W , Chen X , Men X , Ruan H , Hu M , Liu S , Lu T , Liao J , Zhang B , Lu D , Huang Y , Fan P , Rao J , Lei C , Wang J , Ma X , Zhu Q , Li L , Zhu X , Hou Y , Li S , Dong Q , Tian Q , Ai L , Luo W , Zuo M , Shen L , Xie C , Song H , Xu G , Zheng K , Zhang Z , Lu Y , Qiu W , Chen T , Xiang AP , Lu Z . Gut microbiota from patients with arteriosclerotic CSVD induces higher IL-17A production in neutrophils via activating RORγt. Sci Adv, 2021, 7: eabe4827.
doi: 10.1126/sciadv.abe4827
|
80 |
Saji N , Saito Y , Yamashita T , Murotani K , Tsuduki T , Hisada T , Sugimoto T , Niida S , Toba K , Sakurai T . Relationship between plasma lipopolysaccharides, gut Microbiota, and dementia: a cross-sectional study. J Alzheimers Dis, 2022, 86: 1947- 1957.
doi: 10.3233/JAD-215653
|