[1] Niesvizky-Kogan I, Bass M, Goldenholz SR, Goldenholz DM. Focal cooling for drug-resistant epilepsy:a review[J]. JAMA Neurol, 2022, 79:937-944. [2] Ren G, Yan J, Tao G, Gan Y, Li D, Yan X, Fu Y, Wang L, Wang W, Zhang Z, Yue F, Yang X. Rapid focal cooling attenuates cortical seizures in a primate epilepsy model[J]. Exp Neurol, 2017, 295:202-210. [3] Csernyus B, Szabó Á, Fiáth R, Zátonyi A, Lázár C, Pongrácz A, Fekete Z. A multimodal, implantable sensor array and measurement system to investigate the suppression of focal epileptic seizure using hypothermia[J]. J Neural Eng, 2021, 18:0460c3. [4] Csernyus B, Szabó Á, Zátonyi A, Hodován R, Lázár C, Fekete Z, Erőss L, Pongrácz A. Recent antiepileptic and neuroprotective applications of brain cooling[J]. Seizure, 2020, 82:80-90. [5] Hsu MH, Kuo HC, Lin JJ, Chou MY, Lin YJ, Hung PL. Therapeutic hypothermia for pediatric refractory status epilepticus may ameliorate post-status epilepticus epilepsy[J]. Biomed J, 2020, 43:277-284. [6] He Y, Inoue T, Nomura S, Maruta Y, Kida H, Yamakawa T, Hirayama Y, Imoto H, Suzuki M. Limitations of local brain cooling on generalized motor seizures from unknown foci in awake rats[J]. Neurol Med Chir (Tokyo), 2019, 59:147-153. [7] Assis FR, Narasimhan B, Ziai W, Tandri H. From systemic to selective brain cooling:methods in review[J]. Brain Circ, 2019, 5:179-186. [8] Fernandes J, Vendramini E, Miranda AM, Silva C, Dinis H, Coizet V, David O, Mendes PM. Design and performance assessment of a solid-state microcooler for thermal neuromodulation[J]. Micromachines (Basel), 2018, 9:47. [9] Abe T, Fujiwara K, Inoue T, Kubo T, Yamakawa T, Nomura S, Suzuki M, Kano M. Optimal design of neuroprotective focal brain cooling device using surrogate model approach[J]. IEEE Trans Med Robot Bionics, 2020. [10] Hata K, Fujiwara K, Inoue T, Abe T, Kubo T, Yamakawa T, Nomura S, Imoto H, Suzuki M, Kano M. Epileptic seizure suppression by focal brain cooling with recirculating coolant cooling system:modeling and simulation[J]. IEEE Trans Neural Syst Rehabil Eng, 2019, 27:162-171. [11] Tokiwa T, Zimin L, Ishiguro H, Inoue T, Kajigaya H, Nomura S, Suzuki M, Yamakawa T. A palm-sized cryoprobe system with a built-in thermocouple and its application in an animal model of epilepsy[J]. IEEE Trans Biomed Eng, 2019, 66:3168-3175. [12] Davis JA, Grau JW. Protecting the injured central nervous system:do anesthesia or hypothermia ameliorate secondary injury[J]? Exp Neurol, 2023, 363:114349. [13] Yang GS, Zhou XY, An XF, Liu XJ, Zhang YJ, Yu D. Mild hypothermia inhibits the Notch 3 and Notch 4 activation and seizure after stroke in the rat model[J]. Pathol Res Pract, 2018, 214:1008-1016. [14] Liu R, Xing Y, Zhang H, Wang J, Lai H, Cheng L, Li D, Yu T, Yan X, Xu C, Piao Y, Zeng L, Loh HH, Zhang G, Yang X. Imbalance between the function of Na+-K+-2Cl and K+-Cl impairs Cl-homeostasis in human focal cortical dysplasia[J]. Front Mol Neurosci, 2022, 15:954167. [15] Cheng L, Xing Y, Zhang H, Liu R, Lai H, Piao Y, Wang W, Yan X, Li X, Wang J, Li D, Loh HH, Yu T, Zhang G, Yang X. Mechanistic analysis of micro-neurocircuits underlying the epileptogenic zone in focal cortical dysplasia patients[J]. Cereb Cortex, 2022, 32:2216-2230. [16] Nomura S, Kida H, Hirayama Y, Imoto H, Inoue T, Moriyama H, Mitsushima D, Suzuki M. Reduction of spike generation frequency by cooling in brain slices from rats and from patients with epilepsy[J]. J Cereb Blood Flow Metab, 2019, 39:2286-2294. [17] Shen KF, Schwartzkroin PA. Effects of temperature alterations on population and cellular activities in hippocampal slices from mature and immature rabbit[J]. Brain Res, 1988, 475:305-316. [18] Volgushev M, Vidyasagar TR, Chistiakova M, Yousef T, Eysel UT. Membrane properties and spike generation in rat visual cortical cells during reversible cooling[J]. J Physiol, 2000, 522(Pt 1):59-76. [19] Milburn T, Saint DA, Chung SH. The temperature dependence of conductance of the sodium channel:implications for mechanisms of ion permeation[J]. Recept Channels, 1995, 3:201-211. [20] Ziburkus J, Cressman JR, Barreto E, Schiff SJ. Interneuron and pyramidal cell interplay during in vitro seizure-like events[J]. J Neurophysiol, 2006, 95:3948-3954. [21] Žiburkus J, Cressman JR, Schiff SJ. Seizures as imbalanced up states:excitatory and inhibitory conductances during seizure-like events[J]. J Neurophysiol, 2013, 109:1296-1306. [22] Avoli M, de Curtis M, Gnatkovsky V, Gotman J, Köhling R, Lévesque M, Manseau F, Shiri Z, Williams S. Specific imbalance of excitatory/inhibitory signaling establishes seizure onset pattern in temporal lobe epilepsy[J]. J Neurophysiol, 2016, 115:3229-3237. [23] Lévesque M, Herrington R, Hamidi S, Avoli M. Interneurons spark seizure-like activity in the entorhinal cortex[J]. Neurobiol Dis, 2016, 87:91-101. [24] Parrish RR, Codadu NK, Mackenzie-Gray Scott C, Trevelyan AJ. Feedforward inhibition ahead of ictal wavefronts is provided by both parvalbumin-and somatostatin-expressing interneurons[J]. J Physiol, 2019, 597:2297-2314. [25] Gentiletti D, de Curtis M, Gnatkovsky V, Suffczynski P. Focal seizures are organized by feedback between neural activity and ion concentration changes[J]. Elife, 2022, 11:e68541. [26] Shiri Z, Manseau F, Lévesque M, Williams S, Avoli M. Interneuron activity leads to initiation of low-voltage fast-onset seizures[J]. Ann Neurol, 2015, 77:541-546. [27] Lévesque M, Chen LY, Hamidi S, Avoli M. Dynamic interneuron-principal cell interplay leads to a specific pattern of in vitro ictogenesis[J]. Neurobiol Dis, 2018, 115:92-100. [28] Avoli M, de Curtis M. GABAergic synchronization in the limbic system and its role in the generation of epileptiform activity[J]. Prog Neurobiol, 2011, 95:104-132. [29] Viitanen T, Ruusuvuori E, Kaila K, Voipio J. The K+-Cl cotransporter KCC2 promotes GABAergic excitation in the mature rat hippocampus[J]. J Physiol, 2010, 588(Pt 9):1527-1540. [30] Avoli M, Methot M, Kawasaki H. GABA-dependent generation of ectopic action potentials in the rat hippocampus[J]. Eur J Neurosci, 1998, 10:2714-2722. [31] de Curtis M, Avoli M. Initiation, propagation, and termination of partial (focal) seizures[J]. Cold Spring Harb Perspect Med, 2015, 5:a022368. [32] Ellender TJ, Raimondo JV, Irkle A, Lamsa KP, Akerman CJ. Excitatory effects of parvalbumin-expressing interneurons maintain hippocampal epileptiform activity via synchronous afterdischarges[J]. J Neurosci, 2014, 34:15208-15222. [33] Jiruska P, de Curtis M, Jefferys JG, Schevon CA, Schiff SJ, Schindler K. Synchronization and desynchronization in epilepsy:controversies and hypotheses[J]. J Physiol, 2013, 591:787-797. [34] Topolnik L, Steriade M, Timofeev I. Hyperexcitability of intact neurons underlies acute development of trauma-related electrographic seizures in cats in vivo[J]. Eur J Neurosci, 2003, 18:486-496. [35] Schindler K, Leung H, Elger CE, Lehnertz K. Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG[J]. Brain, 2007, 130(Pt 1):65-77. [36] Kramer MA, Truccolo W, Eden UT, Lepage KQ, Hochberg LR, Eskandar EN, Madsen JR, Lee JW, Maheshwari A, Halgren E, Chu CJ, Cash SS. Human seizures self-terminate across spatial scales via a critical transition[J]. Proc Natl Acad Sci USA, 2012, 109:21116-21121. [37] Ledri M, Madsen MG, Nikitidou L, Kirik D, Kokaia M. Global optogenetic activation of inhibitory interneurons during epileptiform activity[J]. J Neurosci, 2014, 34:3364-3377. |