[1] Kawasumi M, Hashimoto Y, Chiba T, Kanekura K, Yamagishi Y, Ishizaka M, Tajima H, Niikura T, Nishimoto I. Molecular mechanisms for neuronal cell death by Alzheimer's amyloid precursor protein-relevant insults[J]. Neurosignals, 2002, 11:236-250. [2] Watson D, Castaño E, Kokjohn TA, Kuo YM, Lyubchenko Y, Pinsky D, Connolly ES Jr, Esh C, Luehrs DC, Stine WB, Rowse LM, Emmerling MR, Roher AE. Physicochemical characteristics of soluble oligomeric Abeta and their pathologic role in Alzheimer's disease[J]. Neurol Res, 2005, 27:869-881. [3] Carrotta R, Di Carlo M, Manno M, Montana G, Picone P, Romancino D, San Biagio PL. Toxicity of recombinant beta-amyloid prefibrillar oligomers on the morphogenesis of the sea urchin Paracentrotus lividus[J]. FASEB J, 2006, 20:1916-1917. [4] Ma G, Fu Q, Zhang Y, Gao J, Jiang J, Bi A, Liu K, Du Y, Chen C, Cui Y, Lu L. Effects of Abeta1-42 on the subunits of KATP expression in cultured primary rat basal forebrain neurons[J]. Neurochem Res, 2008, 33:1419-1424. [5] Yamada S, Kane GC, Behfar A, Liu XK, Dyer RB, Faustino RS, Miki T, Seino S, Terzic A. Protection conferred by myocardial ATP-sensitive K+ channels in pressure overload-induced congestive heart failure revealed in KCNJ11 Kir6.2-null mutant[J]. J Physiol, 2006, 577(Pt 3):1053-1065. [6] Lefer DJ, Nichols CG, Coetzee WA. Sulfonylurea receptor 1 subunits of ATP-sensitive potassium channels and myocardial ischemia/reperfusion injury[J]. Trends Cardiovasc Med, 2009, 19:61-67. [7] Yu Y, Zhou L, Sun M, Zhou T, Zhong K, Wang H, Liu Y, Liu X, Xiao R, Ge J, Tu P, Fan DS, Lan Y, Hui C, Chui D. Xylocoside G reduces amyloid-β induced neurotoxicity by inhibiting NF-κB signaling pathway in neuronal cells[J]. J Alzheimers Dis, 2012, 30:263-275. [8] Ferrer I. Stress kinases involved in tau phosphorylation in Alzheimer's disease, tauopathies and APP transgenic mice[J]. Neurotox Res, 2004, 6:469-475. [9] Zhu X, Rottkamp CA, Hartzler A, Sun Z, Takeda A, Boux H, Shimohama S, Perry G, Smith MA. Activation of MKK6, an upstream activator of p38, in Alzheimer's disease[J]. J Neurochem, 2001, 79:311-318. [10] Kim HJ, Kim JH, Chae SC, Park YC, Kwon KS, Hong ST. Soluble oligomeric Abeta disrupts the protein kinase C signaling pathway[J]. Neuroreport, 2004, 15:503-507. [11] Sattiraju S, Reyes S, Kane GC, Terzic A. K(ATP) channel pharmacogenomics:from bench to bedside[J]. Clin Pharmacol Ther, 2008, 83:354-357. [12] Selkoe DJ. Clearing the brain's amyloid cobwebs[J]. Neuron, 2001, 32:177-180. [13] Liu J, Yin F, Zheng X, Jing J, Hu Y. Geniposide, a novel agonist for GLP-1 receptor, prevents PC12 cells from oxidative damage via MAP kinase pathway[J]. Neurochem Int, 2007, 51:361-369. [14] Patel JR, Brewer GJ. Age-related differences in NFkappaB translocation and Bcl-2/Bax ratio caused by TNFalpha and Abeta42 promote survival in middle-age neurons and death in old neurons[J]. Exp Neurol, 2008, 213:93-100. [15] Tickler AK, Wade JD, Separovic F. The role of Abeta peptides in Alzheimer's disease[J]. Protein Pept Lett, 2005, 12:513-519. [16] Zeng X, Wang T, Jiang L, Ma G, Tan S, Li J, Gao J, Liu K, Zhang Y. Diazoxide and cyclosporin A protect primary cholinergic neurons against beta-amyloid (1-42)-induced cytotoxicity[J]. Neurol Res, 2013, 35:529-536. [17] Zhi-Kun S, Hong-Qi Y, Zhi-Quan W, Jing P, Zhen H, Sheng-Di C. Erythropoietin prevents PC12 cells from beta-amyloid-induced apoptosis via PI3K/Akt pathway[J]. Transl Neurodegener, 2012, 1:7. [18] Liu D, Slevin JR, Lu C, Chan SL, Hansson M, Elmér E, Mattson MP. Involvement of mitochondrial K+ release and cellular efflux in ischemic and apoptotic neuronal death[J]. J Neurochem, 2003, 86:966-979. [19] Tan S, Ma G, Li Y, Li J, Yao W, Ren X, Liu X, Gao J. Effects of Aβ1-42 on the current of KATP channels in cultured cholinergic neurons[J]. Neurol Res, 2012, 34:707-713. [20] Ma G, Gao J, Fu Q, Jiang L, Wang R, Zhang Y, Liu K. Diazoxide reverses the enhanced expression of KATP subunits in cholinergic neurons caused by exposure to Aβ1-42[J]. Neurochem Res, 2009, 34:2133-2140. [21] Elfering SL, Sarkela TM, Giulivi C. Biochemistry of mitochondria nitric -oxide synthase[J]. J Biol Chem, 2002, 277:38079-38086. [22] Geng L, Zhang T, Liu W, Chen Y. Inhibition of miR-128 Abates Aβ-mediated cytotoxicity by targeting PPAR-γ via NF-κB inactivation in primary mouse cortical neurons and neuro2a cells[J]. Yonsei Med J, 2018, 59:1096-1106. [23] Mattson MP, Culmsee C, Yu Z, Camandola S. Roles of nuclear factor kappaB in neuronal survival and plasticity[J]. J Neurochem, 2000, 74:443-456. [24] Cuadrado A, Nebreda AR. Mechanisms and functions of p38 MAPK signalling[J]. Biochem J, 2010, 429:403-417. [25] Barone FC, Irving EA, Ray AM, Lee JC, Kassis S, Kumar S, Badger AM, Legos JJ, Erhardt JA, Ohlstein EH, Hunter AJ, Harrison DC, Philpott K, Smith BR, Adams JL, Parsons AA. Inhibition of p38 mitogen-activated protein kinase provides neuroprotection in cerebral focal ischemia[J]. Med Res Rev, 2001, 21:129-145. [26] Ossum CG, Lauritsen AN, Karottki DG, Hoffmann EK. Differential role for ERK2 in anoxia-induced activation of transcription and translation of Hsp70 in NIH 3T3 cells[J]. Cell Physiol Biochem, 2011, 27:109-120. [27] Shukla D, Saxena S, Jayamurthy P, Sairam M, Singh M, Jain SK, Bansal A, Ilavazaghan G. Hypoxic preconditioning with cobalt attenuates hypobaric hypoxia-induced oxidative damage in rat lungs[J]. High Alt Med Biol, 2009, 10:57-69. [28] Munoz L, Ralay Ranaivo H, Roy SM, Hu W, Craft JM, McNamara LK, Chico LW, Van Eldik LJ, Watterson DM. A novel p38 alpha MAPK inhibitor suppresses brain proinflammatory cytokine up-regulation and attenuates synaptic dysfunction and behavioral deficits in an Alzheimer's disease mouse model[J]. J Neuroinflammation, 2007, 4:21. [29] Kim SH, Smith CJ, Van Eldik LJ. Importance of MAPK pathways for microglial pro-inflammatory cytokine IL-1 beta production[J]. Neurobiol Aging, 2004, 25:431-439. [30] Bachstetter AD, Xing B, de Almeida L, Dimayuga, ER,Watterson DM, Van Eldik LJ. Microglial p38alpha MAPK is a key regulator of proinflammatory cytokine up-regulation induced by toll-like receptor (TLR) ligands or beta-amyloid (Abeta)[J]. J Neuroinflammation, 2011, 8:79. [31] Bodles AM, Barger SW. Secreted beta-amyloid precursor protein activates microglia via JNK and p38-MAPK[J]. Neurobiol Aging, 2005, 26:9-16. [32] Kikuchi M, Tenneti L, Lipton SA. Role of p38 mitogen-activated protein kinase in axotomy-induced apoptosis of retinal ganglion cells[J]. J Neurosci, 2000, 20:5037-5044. [33] Ge B, Gram H, Di Padova F, Huang B, New L, Ulevitch Luo Y, Han J. MAPKK-independent activation of p38alpha mediated by TAB1-dependent autophosphorylation of p38alpha[J]. Science, 2002, 295:1291-1294. [34] Li J, Miller EJ, Ninomiya-Tsuji J, Russell RR 3rd, Young LH. AMP-activated protein kinase activates p38 mitogen-activated protein kinase by increasing recruitment of p38 MAPK to TAB1 in the ischemic heart[J]. Circ Res, 2005, 97:872-879. [35] D'Cruz BJ, Fertig KC, Filiano AJ, Hicks SD, DeFranco DB, Callaway CW. Hypothermic reperfusion after cardiac arrest augments brain-derived neurotrophic factor activation[J]. J Cereb Blood Flow Metab, 2002, 22:843-851. [36] Xu SZ, Bullock L, Shan CJ, Cornelius K, Rajanna B. PKC isoforms were reduced by lead in the developing rat brain[J]. Int J Dev Neurosci, 2005, 23:53-64. [37] Fu H, Dou J, Li W, Cui W, Mak S, Hu Q, Luo J, Lam CS, Pang Y, Youdim MB, Han Y. Promising multifunctional anti-Alzheimer's dimer bis(7)-cognitin acting as an activator of protein kinase C regulates activities of alpha-secretase and BACE-1 concurrently[J]. Eur J Pharmacol, 2009, 623:14-21. [38] Lanni C, Mazzucchelli M, Porrello E, Govoni S, Racchi M. Differential involvement of protein kinase C alpha and epsilon in the regulated secretion of soluble amyloid precursor protein[J]. Eur J Biochem, 2004, 271:3068-3075. [39] Alkon DL, Epstein H, Kuzirian A, Bennett MC, Nelson TJ. Protein synthesis required for long-term memory is induced PKC activation on days before associative learning[J]. Proc Natl Acad Sci USA, 2005, 102:16432-16437. |