[1] Zhou M, Wang H, Zeng X, Yin P, Zhu J, Chen W, Li X, Wang L, Wang L, Liu Y, Liu J, Zhang M, Qi J, Yu S, Afshin A, Gakidou E, Glenn S, Krish VS, Miller-Petrie MK, Mountjoy-Venning WC, Mullany EC, Redford SB, Liu H, Naghavi M, Hay SI, Wang L, Murray CJL, Liang X. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017:a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2019, 394:1145-1158. [2] Jia L, Du Y, Chu L, Zhang Z, Li F, Lyu D, Li Y, Li Y, Zhu M, Jiao H, Song Y, Shi Y, Zhang H, Gong M, Wei C, Tang Y, Fang B, Guo D, Wang F, Zhou A, Chu C, Zuo X, Yu Y, Yuan Q, Wang W, Li F, Shi S, Yang H, Zhou C, Liao Z, Lv Y, Li Y, Kan M, Zhao H, Wang S, Yang S, Li H, Liu Z, Wang Q, Qin W, Jia J; COAST Group. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China:a cross-sectional study[J]. Lancet Public Health, 2020, 5:e661-671. [3] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019[J]. CA Cancer J Clin, 2019, 69:7-34. [4] Ren X, Boriero D, Chaiswing L, Bondada S, St Clair DK, Butterfield DA. Plausible biochemical mechanisms of chemotherapy-induced cognitive impairment ("chemobrain"), a condition that significantly impairs the quality of life of many cancer survivors[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865:1088-1097. [5] Ahles TA, Root JC. Cognitive effects of cancer and cancer treatments[J]. Annu Rev Clin Psychol, 2018, 14:425-451. [6] Wefel JS, Kesler SR, Noll KR, Schagen SB. Clinical characteristics, pathophysiology, and management of noncentral nervous system cancer-related cognitive impairment in adults[J]. CA Cancer J Clin, 2015, 65:123-138. [7] Lange M, Joly F, Vardy J, Ahles T, Dubois M, Tron L, Winocur G, De Ruiter MB, Castel H. Cancer-related cognitive impairment:an update on state of the art, detection, and management strategies in cancer survivors[J]. Ann Oncol, 2019, 30:1925-1940. [8] Janelsins MC, Heckler CE, Peppone LJ, Kamen C, Mustian KM, Mohile SG, Magnuson A, Kleckner IR, Guido JJ, Young KL, Conlin AK, Weiselberg LR, Mitchell JW, Ambrosone CA, Ahles TA, Morrow GR. Cognitive complaints in survivors of breast cancer after chemotherapy compared with age-matched controls:an analysis from a nationwide, multicenter, prospective longitudinal study[J]. J Clin Oncol, 2017, 35:506-514. [9] Janelsins MC, Kesler SR, Ahles TA, Morrow GR. Prevalence, mechanisms, and management of cancer-related cognitive impairment[J]. Int Rev Psychiatry, 2014, 26:102-113. [10] Rummel NG, Chaiswing L, Bondada S, St Clair DK, Butterfield DA. Chemotherapy-induced cognitive impairment:focus on the intersection of oxidative stress and TNFα[J]. Cell Mol Life Sci, 2021.[Epub ahead of print] [11] Ren X, Keeney JTR, Miriyala S, Noel T, Powell DK, Chaiswing L, Bondada S, St Clair DK, Butterfield DA. The triangle of death of neurons:oxidative damage, mitochondrial dysfunction, and loss of choline-containing biomolecules in brains of mice treated with doxorubicin:advanced insights into mechanisms of chemotherapy induced cognitive impairment ("chemobrain") involving TNF-α[J]. Free Radic Biol Med, 2019, 134:1-8. [12] Tönnies E, Trushina E. Oxidative stress, synaptic dysfunction, and Alzheimer's disease[J]. J Alzheimers Dis, 2017, 57:1105-1121. [13] Williams AM, van Wijngaarden E, Seplaki CL, Heckler CE, Weber MT, Barr PM, Zent CS, Janelsins MC. Cognitive function in patients with chronic lymphocytic leukemia:a cross-sectional study examining effects of disease and treatment[J]. Leuk Lymphoma, 2020, 61:1627-1635. [14] Kaiser J, Dietrich J, Amiri M, Rüschel I, Akbaba H, Hantke N, Fliessbach K, Senf B, Solbach C, Bledowski C. Cognitive performance and psychological distress in breast cancer patients at disease onset[J]. Front Psychol, 2019, 10:2584. [15] Shiroishi MS, Gupta V, Bigjahan B, Cen SY, Rashid F, Hwang DH, Lerner A, Boyko OB, Liu CJ, Law M, Thompson PM, Jahanshad N. Brain cortical structural differences between non-central nervous system cancer patients treated with and without chemotherapy compared to non-cancer controls:a cross-sectional pilot MRI study using clinically-indicated scans[J]. Proc SPIE Int Soc Opt Eng, 2017, 10572:105720G. [16] Olson B, Marks DL. Pretreatment cancer-related cognitive impairment-mechanisms and outlook[J]. Cancers (Basel), 2019, 11:687. [17] Patel SK, Wong AL, Wong FL, Breen EC, Hurria A, Smith M, Kinjo C, Paz IB, Kruper L, Somlo G, Mortimer JE, Palomares MR, Irwin MR, Bhatia S. Inflammatory biomarkers, comorbidity, and neurocognition in women with newly diagnosed breast cancer[J]. J Natl Cancer Inst, 2015, 107:djv131. [18] Lyon DE, Cohen R, Chen H, Kelly DL, McCain NL, Starkweather A, Ahn H, Sturgill J, Jackson-Cook CK. Relationship of systemic cytokine concentrations to cognitive function over two years in women with early stage breast cancer[J]. J Neuroimmunol, 2016, 301:74-82. [19] Wardill HR, Mander KA, Van Sebille YZ, Gibson RJ, Logan RM, Bowen JM, Sonis ST. Cytokine-mediated blood brain barrier disruption as a conduit for cancer/chemotherapy-associated neurotoxicity and cognitive dysfunction[J]. Int J Cancer, 2016, 139:2635-2645. [20] Santos JC, Pyter LM. Neuroimmunology of behavioral comorbidities associated with cancer and cancer treatments[J]. Front Immunol, 2018, 9:1195. [21] Kaur D, Sharma V, Deshmukh R. Activation of microglia and astrocytes:a roadway to neuroinflammation and Alzheimer's disease[J]. Inflammopharmacology, 2019, 27:663-677. [22] Capuron L, Miller AH. Immune system to brain signaling:neuropsychopharmacological implications[J]. Pharmacol Ther, 2011, 130:226-238. [23] Fischer HG, Reichmann G. Brain dendritic cells and macrophages/microglia in central nervous system inflammation[J]. J Immunol, 2001, 166:2717-2726. [24] Clancy J, D'Souza-Schorey C. Extracellular vesicles in cancer:purpose and promise[J]. Cancer J, 2018, 24:65-69. [25] Xu R, Rai A, Chen M, Suwakulsiri W, Greening DW, Simpson RJ. Extracellular vesicles in cancer:implications for future improvements in cancer care[J]. Nat Rev Clin Oncol, 2018, 15:617-638. [26] Kok VC, Yu CC. Cancer-derived exosomes:their role in cancer biology and biomarker development[J]. Int J Nanomedicine, 2020, 15:8019-8036. [27] Delpech JC, Herron S, Botros MB, Ikezu T. Neuroimmune crosstalk through extracellular vesicles in health and disease[J]. Trends Neurosci, 2019, 42:361-372. [28] Li JJ, Wang B, Kodali MC, Chen C, Kim E, Patters BJ, Lan L, Kumar S, Wang X, Yue J, Liao FF. In vivo evidence for the contribution of peripheral circulating inflammatory exosomes to neuroinflammation[J]. J Neuroinflammation, 2018, 15:8. [29] Pascual M, Ibáñez F, Guerri C. Exosomes as mediators of neuron-glia communication in neuroinflammation[J]. Neural Regen Res, 2020, 15:796-801. [30] Frühbeis C, Kuo-Elsner WP, Müller C, Barth K, Peris L, Tenzer S, Möbius W, Werner HB, Nave KA, Fröhlich D, Krämer-Albers EM. Oligodendrocytes support axonal transport and maintenance via exosome secretion[J]. PLoS Biol, 2020, 18:e3000621. [31] Gharbi T, Zhang Z, Yang GY. The function of astrocyte mediated extracellular vesicles in central nervous system diseases[J]. Front Cell Dev Biol, 2020, 8:568889. [32] Antonucci F, Turola E, Riganti L, Caleo M, Gabrielli M, Perrotta C, Novellino L, Clementi E, Giussani P, Viani P, Matteoli M, Verderio C. Microvesicles released from microglia stimulate synaptic activity via enhanced sphingolipid metabolism[J]. EMBO J, 2012, 31:1231-1240. [33] Zhang G, Yang P. A novel cell-cell communication mechanism in the nervous system:exosomes[J]. J Neurosci Res, 2018, 96:45-52. [34] Treps L, Edmond S, Harford-Wright E, Galan-Moya EM, Schmitt A, Azzi S, Citerne A, Bidère N, Ricard D, Gavard J. Extracellular vesicle-transported Semaphorin3A promotes vascular permeability in glioblastoma[J]. Oncogene, 2016, 35:2615-2623. [35] Zhang Z, Yin J, Lu C, Wei Y, Zeng A, You Y. Exosomal transfer of long non-coding RNA SBF2-AS1 enhances chemoresistance to temozolomide in glioblastoma[J]. J Exp Clin Cancer Res, 2019, 38:166. [36] Koh YQ, Tan CJ, Toh YL, Sze SK, Ho HK, Limoli CL, Chan A. Role of exosomes in cancer-related cognitive impairment[J]. Int J Mol Sci, 2020, 21:2755. [37] Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV. Blood-brain barrier:from physiology to disease and back[J]. Physiol Rev, 2019, 99:21-78. [38] Liebner S, Dijkhuizen RM, Reiss Y, Plate KH, Agalliu D, Constantin G. Functional morphology of the blood-brain barrier in health and disease[J]. Acta Neuropathol, 2018, 135:311-336. [39] Morad G, Carman CV, Hagedorn EJ, Perlin JR, Zon LI, Mustafaoglu N, Park TE, Ingber DE, Daisy CC, Moses MA. Tumor-derived extracellular vesicles breach the intact blood-brain barrier via transcytosis[J]. ACS Nano, 2019, 13:13853-13865. [40] Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorder[J]. Nat Rev Neurol, 2018, 14:133-150. [41] Hanahan D, Weinberg RA. Hallmarks of cancer:the next generation[J]. Cell, 2011, 144:646-674. [42] Saharinen P, Eklund L, Alitalo K. Therapeutic targeting of the angiopoietin-TIE pathway[J]. Nat Rev Drug Discov, 2017, 16:635-661. [43] Zajączkowska R, Kocot-Kępska M, Leppert W, Wrzosek A, Mika J, Wordliczek J. Mechanisms of chemotherapy-induced peripheral neuropathy[J]. Int J Mol Sci, 2019, 20:1451. [44] Vitali M, Ripamonti CI, Roila F, Proto C, Signorelli D, Imbimbo M, Corrao G, Brissa A, Rosaria G, de Braud F, Garassino MC, Lo Russo G. Cognitive impairment and chemotherapy:a brief overview[J]. Crit Rev Oncol Hematol, 2017, 118:7-14. [45] de Ruiter MB, Reneman L, Boogerd W, Veltman DJ, van Dam FS, Nederveen AJ, Boven E, Schagen SB. Cerebral hyporesponsiveness and cognitive impairment 10 years after chemotherapy for breast cancer[J]. Hum Brain Mapp, 2011, 32:1206-1219. [46] Janelsins MC, Heckler CE, Peppone LJ, Ahles TA, Mohile SG, Mustian KM, Palesh O, O'Mara AM, Minasian LM, Williams AM, Magnuson A, Geer J, Dakhil SR, Hopkins JO, Morrow GR. Longitudinal trajectory and characterization of cancer-related cognitive impairment in a nationwide cohort study[J]. J Clin Oncol, 2018.[Epub ahead of print] [47] Collins B, MacKenzie J, Tasca GA, Scherling C, Smith A. Cognitive effects of chemotherapy in breast cancer patients:a dose-response study[J]. Psychooncology, 2013, 22:1517-1527. [48] Mounier NM, Abdel-Maged AE, Wahdan SA, Gad AM, Azab SS. Chemotherapy-induced cognitive impairment (CICI):an overview of etiology and pathogenesis[J]. Life Sci, 2020, 258:118071. [49] Bagnall-Moreau C, Chaudhry S, Salas-Ramirez K, Ahles T, Hubbard K. Chemotherapy-induced cognitive impairment is associated with increased inflammation and oxidative damage in the hippocampus[J]. Mol Neurobiol, 2019, 56:7159-7172. [50] Michalak S, Rybacka-Mossakowska J, Ambrosius W, Gazdulska J, Gołda-Gocka I, Kozubski W, Ramlau R. The markers of glutamate metabolism in peripheral blood mononuclear cells and neurological complications in lung cancer patients[J]. Dis Markers, 2016:ID2895972. [51] Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL, Wood LS, Inema I, Miller SE, Bieri G, Zuchero JB, Barres BA, Woo PJ, Vogel H, Monje M. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain[J]. Science, 2014, 344:1252304. [52] Briones TL, Woods J. Dysregulation in myelination mediated by persistent neuroinflammation:possible mechanisms in chemotherapy-related cognitive impairment[J]. Brain Behav Immun, 2014, 35:23-32. [53] Berlin C, Lange K, Lekaye HC, Hopland K, Phillips S, Piao J, Tabar V. Long-term clinically relevant rodent model of methotrexate-induced cognitive impairment[J]. Neuro Oncol, 2020, 22:1126-1137. [54] Sirichoat A, Krutsri S, Suwannakot K, Aranarochana A, Chaisawang P, Pannangrong W, Wigmore P, Welbat JU. Melatonin protects against methotrexate-induced memory deficit and hippocampal neurogenesis impairment in a rat model[J]. Biochem Pharmacol, 2019, 163:225-233. [55] Sirichoat A, Suwannakot K, Chaisawang P, Pannangrong W, Aranarochana A, Wigmore P, Welbat JU. Melatonin attenuates 5-fluorouracil-induced spatial memory and hippocampal neurogenesis impairment in adult rats[J]. Life Sci, 2020, 248:117468. [56] El-Agamy SE, Abdel-Aziz AK, Wahdan S, Esmat A, Azab SS. Astaxanthin ameliorates doxorubicin-induced cognitive impairment (chemobrain) in experimental rat model:impact on oxidative, inflammatory, and apoptotic machineries[J]. Mol Neurobiol, 2018, 55:5727-5740. [57] Keeney JT, Miriyala S, Noel T, Moscow JA, St Clair DK, Butterfield DA. Superoxide induces protein oxidation in plasma and TNF-α elevation in macrophage culture:insights into mechanisms of neurotoxicity following doxorubicin chemotherapy[J]. Cancer Lett, 2015, 367:157-161. [58] Lv L, Mao S, Dong H, Hu P, Dong R. Pathogenesis, assessments, and management of chemotherapy-related cognitive impairment (CRCI):an updated literature review[J]. J Oncol, 2020:ID3942439. [59] Ren X, St Clair DK, Butterfield DA. Dysregulation of cytokine mediated chemotherapy induced cognitive impairment[J]. Pharmacol Res, 2017, 117:267-273. [60] Gibson EM, Monje M. Emerging mechanistic underpinnings and therapeutic targets for chemotherapy-related cognitive impairment[J]. Curr Opin Oncol, 2019, 31:531-539. [61] Lyon D, Elmore L, Aboalela N, Merrill-Schools J, McCain N, Starkweather A, Elswick RK Jr, Jackson-Cook C. Potential epigenetic mechanism(s) associated with the persistence of psychoneurological symptoms in women receiving chemotherapy for breast cancer:a hypothesis[J]. Biol Res Nurs, 2014, 16:160-174. [62] Cardoso S, Santos RX, Carvalho C, Correia S, Pereira GC, Pereira SS, Oliveira PJ, Santos MS, Proença T, Moreira PI. Doxorubicin increases the susceptibility of brain mitochondria to Ca(2+)-induced permeability transition and oxidative damage[J]. Free Radic Biol Med, 2008, 45:1395-1402. [63] Uzar E, Koyuncuoglu HR, Uz E, Yilmaz HR, Kutluhan S, Kilbas S, Gultekin F. The activities of antioxidant enzymes and the level of malondialdehyde in cerebellum of rats subjected to methotrexate:protective effect of caffeic acid phenethyl ester[J]. Mol Cell Biochem, 2006, 291:63-68. [64] Cauli O. Oxidative stress and cognitive alterations induced by cancer chemotherapy drugs:a scoping review[J]. Antioxidants (Basel), 2021, 10:1116. [65] Nyunt T, Britton M, Wanichthanarak K, Budamagunta M, Voss JC, Wilson DW, Rutledge JC, Aung HH. Mitochondrial oxidative stress-induced transcript variants of ATF3 mediate lipotoxic brain microvascular injury[J]. Free Radic Biol Med, 2019, 143:25-46. [66] Jebahi F, Sharma S, Bloss JE, Wright HH. Effects of tamoxifen on cognition and language in women with breast cancer:a systematic search and a scoping review[J]. Psychooncology, 2021, 30:1262-1277. [67] Taleat Z, Larsson A, Ewing AG. Anticancer drug tamoxifen affects catecholamine transmitter release and storage from single cells[J]. ACS Chem Neurosci, 2019, 10:2060-2069. [68] Gervais NJ, Remage-Healey L, Starrett JR, Pollak DJ, Mong JA, Lacreuse A. Adverse effects of aromatase inhibition on the brain and behavior in a nonhuman primate[J]. J Neurosci, 2019, 39:918-928. [69] Joly F, Heutte N, Duclos B, Noal S, Léger-Hardy I, Dauchy S, Longato N, Desrues L, Houede N, Lange M, Sevin E, Rieux C, Clarisse B, Castel H, Escudier B. Prospective evaluation of the impact of antiangiogenic treatment on cognitive functions in metastatic renal cancer[J]. Eur Urol Focus, 2016, 2:642-649. [70] Mulder SF, Bertens D, Desar IM, Vissers KC, Mulders PF, Punt CJ, van Spronsen DJ, Langenhuijsen JF, Kessels RP, van Herpen CM. Impairment of cognitive functioning during sunitinib or sorafenib treatment in cancer patients:a cross sectional study[J]. BMC Cancer, 2014, 14:219. [71] Abdel-Aziz AK, Mantawy EM, Said RS, Helwa R. The tyrosine kinase inhibitor, sunitinib malate, induces cognitive impairment in vivo via dysregulating VEGFR signaling, apoptotic and autophagic machineries[J]. Exp Neurol, 2016, 283(Pt A):129-141. [72] Joly F, Castel H, Tron L, Lange M, Vardy J. Potential effect of immunotherapy agents on cognitive function in cancer patients[J]. J Natl Cancer Inst, 2020, 112:123-127. [73] Greenbaum U, Kebriaei P, Srour SA, Olson A, Bashir Q, Neelapu SS, Rezvani K, Shpall EJ. Chimeric antigen receptor T-cell therapy toxicities[J]. Br J Clin Pharmacol, 2021, 87:2414-2424. [74] Cuzzubbo S, Belin C, Chouahnia K, Baroudjian B, Duchemann B, Barlog C, Coarelli G, Ursu R, Poirier E, Lebbe C, Carpentier AF. Assessing cognitive function in patients treated with immune checkpoint inhibitors:a feasibility study[J]. Psychooncology, 2018, 27:1861-1864. [75] Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, Braunschweig I, Oluwole OO, Siddiqi T, Lin Y, Timmerman JM, Stiff PJ, Friedberg JW, Flinn IW, Goy A, Hill BT, Smith MR, Deol A, Farooq U, McSweeney P, Munoz J, Avivi I, Castro JE, Westin JR, Chavez JC, Ghobadi A, Komanduri KV, Levy R, Jacobsen ED, Witzig TE, Reagan P, Bot A, Rossi J, Navale L, Jiang Y, Aycock J, Elias M, Chang D, Wiezorek J, Go WY. Axicabtagene ciloleucel CAR T-Cell therapy in refractory large B -Cell lymphoma[J]. N Engl J Med, 2017, 377:2531-2544. [76] Chen H, Wang F, Zhang P, Zhang Y, Chen Y, Fan X, Cao X, Liu J, Yang Y, Wang B, Lei B, Gu L, Bai J, Wei L, Zhang R, Zhuang Q, Zhang W, Zhao W, He A. Management of cytokine release syndrome related to CAR -T cell therapy[J]. Front Med, 2019, 13:610-617. [77] Santomasso BD, Park JH, Salloum D, Riviere I, Flynn J, Mead E, Halton E, Wang X, Senechal B, Purdon T, Cross JR, Liu H, Vachha B, Chen X, DeAngelis LM, Li D, Bernal Y, Gonen M, Wendel HG, Sadelain M, Brentjens RJ. Clinical and biologic correlates of neurotoxicity associated with CAR T cell therapy in patients with B-cell acute lymphoblastic leukemia[J]. Cancer Discov, 2018, 8:958-971. [78] Pazzaglia S, Briganti G, Mancuso M, Saran A. Neurocognitive decline following radiotherapy:mechanisms and therapeutic implications[J]. Cancers (Basel), 2020, 12:146. [79] McDowell LJ, Ringash J, Xu W, Chan B, Lu L, Waldron J, Rock K, So N, Huang SH, Giuliani M, Hope A, O'Sullivan B, Bratman SV, Cho J, Kim J, Jang R, Bayley A, Bernstein LJ. A cross sectional study in cognitive and neurobehavioral impairment in long-term nasopharyngeal cancer survivors treated with intensity-modulated radiotherapy[J]. Radiother Oncol, 2019, 131:179-185. [80] Haldbo-Classen L, Amidi A, Lukacova S, Wu LM, Oettingen GV, Lassen-Ramshad Y, Zachariae R, Kallehauge JF, Høyer M. Cognitive impairment following radiation to hippocampus and other brain structures in adults with primary brain tumours[J]. Radiother Oncol, 2020, 148:1-7. [81] Makale MT, McDonald CR, Hattangadi-Gluth JA, Kesari S. Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours[J]. Nat Rev Neurol, 2017, 13:52-64. [82] McHugh D, Gil J. Senescence and aging:causes, consequences, and therapeutic avenues[J]. J Cell Biol, 2018, 217:65-77. [83] Seo J, Park M. Molecular crosstalk between cancer and neurodegenerative diseases[J]. Cell Mol Life Sci, 2020, 77:2659-2680. [84] Lanni C, Masi M, Racchi M, Govoni S. Cancer and Alzheimer's disease inverse relationship:an age-associated diverging derailment of shared pathways[J]. Mol Psychiatry, 2021, 26:280-295. [85] Nebbioso A, Tambaro FP, Dell'Aversana C, Altucci L. Cancer epigenetics:moving forward[J]. PLoS Genet, 2018, 14:e1007362. [86] Rebeck GW. The role of APOE on lipid homeostasis and inflammation in normal brains[J]. J Lipid Res, 2017, 58:1493-1499. [87] Ahles TA, Saykin AJ, Noll WW, Furstenberg CT, Guerin S, Cole B, Mott LA. The relationship of APOE genotype to neuropsychological performance in long-term cancer survivors treated with standard dose chemotherapy[J]. Psychooncology, 2003, 12:612-619. [88] Fernandez HR, Varma A, Flowers SA, Rebeck GW. Cancer chemotherapy related cognitive impairment and the impact of the Alzheimer's disease risk factor APOE[J]. Cancers (Basel), 2020, 12:3842. |