[1] Malzkorn B, Reifenberger G. Integrated diagnostics of diffuse astrocytic and oligodendroglial tumors[J]. Pathologe, 2019, 40:9-17.
[2] Marko NF, Weil RJ, Schroeder JL, Lang FF, Suki D, Sawaya RE. Extent of resection of glioblastoma revisited:personalized survival modeling facilitates more accurate survival prediction and supports a maximum-safe-resection approach to surgery[J].J Clin Oncol, 2014, 32:774-782.
[3] Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO; European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma[J]. N Engl J Med, 2005, 352:987-996.
[4] Weller M, Cloughesy T, Perry JR, Wick W. Standards of care for treatment of recurrent glioblastoma:are we there yet[J]? Neuro Oncol, 2013, 15:4-27.
[5] Harrison RA, de Groot JF. Treatment of glioblastoma in the Elderly[J]. Drugs Aging, 2018, 35:707-718.
[6] Sui ZY, Li GW, Zhao B. Differential diagnosis of MRI between recurrent glioma and radiation brain injury[J]. Zhongguo Shi Yong Yi Kan, 2018, 45:27-29.[睢争妍, 李国文, 赵兵. 胶质瘤复发与放射性脑损伤的MRI鉴别诊断[J]. 中国实用医刊, 2018, 45:27-29.]
[7] Li ZC, Bai H, Sun Q, Zhao Y, Lv Y, Zhou J, Liang C, Chen Y, Liang D, Zheng H. Multiregional radiomics profiling from multiparametric MRI:identifying an imaging predictor of IDH1 mutation status in glioblastoma[J]. Cancer Med, 2018, 7:5999-6009.
[8] Park YW, Choi YS, Ahn SS, Chang JH, Kim SH, Lee SK. Radiomics MRI phenotyping with machine learning to predict the grade of lower-grade gliomas:a study focused on nonenhancing tumors[J]. Korean J Radiol, 2019, 20:1381-1389.
[9] Li X, Liao S, Hua J, Guo L, Wang D, Xiao X, Zhou J, Liu X, Tan Y, Lu L, Xu Y, Wu Y. Association of glioma grading with inflow-based vascular-space-occupancy MRI:a preliminary study at 3T[J]. J Magn Reson Imaging, 2019, 50:1817-1823.
[10] Wang YL, Chen S, Xiao HF, Li Y, Wang Y, Liu G, Lou X, Ma L. Differentiation between radiation-induced brain injury and glioma recurrence using 3D pCASL and dynamic susceptibility contrast-enhanced perfusion-weighted imaging[J]. Radiother Oncol, 2018, 129:68-74.
[11] Barajas RF Jr, Chang JS, Segal MR, Parsa AT, McDermott MW, Berger MS, Cha S. Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging[J]. Radiology, 2009, 253:486-496.
[12] Bisdas S, Naegele T, Ritz R, Dimostheni A, Pfannenberg C, Reimold M, Koh TS, Ernemann U. Distinguishing recurrent high-grade gliomas from radiation injury:a pilot study using dynamic contrast-enhanced MR imaging[J]. Acad Radiol, 2011, 18:575-583.
[13] Xu JL, Li YL, Lian JM, Dou SW, Yan FS, Wu H, Shi DP. Distinction between postoperative recurrent glioma and radiation injury using MR diffusion tensor imaging[J]. Neuroradiology, 2010, 52:1193-1199.
[14] Rogers LR, Gutierrez J, Scarpace L, Schultz L, Ryu S, Lord B, Movsas B, Honsowetz J, Jain R. Morphologic magnetic resonance imaging features of therapy-induced cerebral necrosis[J]. J Neurooncol, 2011, 101:25-32. |