[1] Lin M, Lu Q, Yu S, Lin W. Best evidence summary for the improvement and management of disorders of consciousness in patients with severe brain injury[J]. Brain Behav, 2025, 15: e70260. [2] Zhang X, Zhang R, Xiong F, Zhang Y, Li Y. Consciousness disorders and swallowing difficulties[J]. Dysphagia, 2025, 40: 1275-1281. [3] Wade DT, Hanrahan A. Do some people with a prolonged disorder of consciousness experience pain: a clinically focused narrative review and synthesis[J]. Clin Rehabil, 2025, 39:796-807. [4] Goizueta S, Maza A, Sierra A, Navarro MD, Noé E, Ferri J, Llorens R. Heart rate variability responses to personalized and non-personalized affective videos: a study on healthy subjects and patients with disorders of consciousness[J]. Front Psychol, 2025, 16:1560496. [5] Noé E, Navarro MD, Moliner B, O'Valle M, Olaya J, Maza A, Llorens R, Ferri J, Rodríguez R, Pérez T, Bernabéu M, Colomer C, Gómez A, González C, Juárez-Belaúnde A, López C, Laxe S, Pelayo R, Ríos M, Quemada I; Spanish Society of Neurorehabilitation. Guideline: neurorehabilitation in patients with disorder of consciousness. Recommendations from the Spanish Society of Neurorehabilitation[J]. Neurologia (Engl Ed), 2025, 40:92-117. [6] Bodien YG, Allanson J, Cardone P, Bonhomme A, Carmona J, Chatelle C, Chennu S, Conte M, Dehaene S, Finoia P, Heinonen G, Hersh JE, Kamau E, Lawrence PK, Lupson VC, Meydan A, Rohaut B, Sanders WR, Sitt JD, Soddu A, Valente M, Velazquez A, Voss HU, Vrosgou A, Claassen J, Edlow BL, Fins JJ, Gosseries O, Laureys S, Menon D, Naccache L, Owen AM, Pickard J, Stamatakis EA, Thibaut A, Victor JD, Giacino JT, Bagiella E, Schiff ND. Cognitive motor dissociation in disorders of consciousness[J]. N Engl J Med, 2024, 391:598-608. [7] Bai Y. Opportunities and challenges in the diagnosis and treatment of disorders of consciousness[J]. Brain Sci, 2025, 15: 487. [8] Mazrooyisebdani M, Nair VA, Loh PL, Remsik AB, Young BM, Moreno BS, Dodd KC, Kang TJ, William JC, Prabhakaran V. Evaluation of changes in the motor network following BCI therapy based on graph theory analysis[J]. Front Neurosci, 2018, 12:861. [9] Chaudhary U, Chander BS, Ohry A, Jaramillo-Gonzalez A, Lulé D, Birbaumer N. Brain computer interfaces for assisted communication in paralysis and quality of life[J]. Int J Neural Syst, 2021, 31:2130003. [10] Kotchoubey B. Evoked and event-related potentials in disorders of consciousness: a quantitative review[J]. Conscious Cogn, 2017, 54:155-167. [11] Chen J, Shi Y, Dong Z, Xu F, Zhou M, Zhu J, Gao J, Liu S. Research hotspots and trends in the application of electroencephalography for assessment of disorders of consciousness: a bibliometric analysis[J]. Front Neurol, 2025, 15:1501947. [12] Li K, Li M, Liu W, Wu Y, Li F, Xie J, Zhou S, Wang S, Guo Y, Pan J, Wang X. Electroencephalographic differences between waking and sleeping periods in patients with prolonged disorders of consciousness at different levels of consciousness[J]. Front Hum Neurosci, 2025, 19:1521355. [13] Lee YC, Phan TG, Jolley DJ, Castley HC, Ingram DA, Reutens DC. Accuracy of clinical signs, SEP, and EEG in predicting outcome of hypoxic coma: a meta-analysis[J]. Neurology, 2010, 74:572-580. [14] Erlbeck H, Real RG, Kotchoubey B, Mattia D, Bargak J, Kübler A. Basic discriminative and semantic processing in patients in the vegetative and minimally conscious state[J]. Int J Psychophysiol, 2017, 113:8-16. [15] Müller-Putz GR, Scherer R, Neuper C, Pfurtscheller G. Steady-state somatosensory evoked potentials: suitable brain signals for brain-computer interfaces[J] ? IEEE Trans Neural Syst Rehabil Eng, 2006, 14:30-37. [16] Chen Y, Li H, Ge Q, Kang X, Zheng H, Zhang S, Chen X, He J, Gao X. What can N100 and ASSR assess in patients with disorders of consciousness [J] ? IEEE Trans Neural Syst Rehabil Eng, 2025, 33:1529-1538. [17] Naci L, Monti MM, Cruse D, Kübler A, Sorger B, Goebel R, Kotchoubey B, Owen AM. Brain-computer interfaces for communication with nonresponsive patients[J]. Ann Neurol, 2012, 72:312-323. [18] Guger C, Prabhakaran V, Spataro R, Krusienski DJ, Hebb AO. Editorial: breakthrough BCI applications in medicine[J]. Front Neurosci, 2020, 14:598247. [19] Hermann B, Stender J, Habert MO, Kas A, Denis-Valente M, Raimondo F, Pérez P, Rohaut B, Sitt JD, Naccache L. Multimodal FDG -PET and EEG assessment improves diagnosis and prognostication of disorders of consciousness [J]. Neuroimage Clin, 2021, 30:102601. [20] Munce SEP, Webster F, Christian J, Gonzalez-Lara LE, Owen AM, Weijer C. Experiences of family of individuals in a locked in, minimally conscious state, or vegetative state with the health care system[J]. Brain Inj, 2021, 35:8-14. [21] Monti MM, Coleman MR, Owen AM. Executive functions in the absence of behavior: functional imaging of the minimally conscious state[J]. Prog Brain Res, 2009, 177:249-260. [22] Cruse D, Chennu S, Fernández-Espejo D, Payne WL, Young GB, Owen AM. Detecting awareness in the vegetative state: electroencephalographic evidence for attempted movements to command[J]. PLoS One, 2012, 7:e49933. [23] Pan J, Xie Q, He Y, Wang F, Di H, Laureys S, Yu R, Li Y. Detecting awareness in patients with disorders of consciousness using a hybrid brain-computer interface[J]. J Neural Eng, 2014, 11:056007. [24] Xiao J, Pan J, He Y, Xie Q, Yu T, Huang H, Lv W, Zhang J, Yu R, Li Y. Visual fixation assessment in patients with disorders of consciousness based on brain-computer interface [J]. Neurosci Bull, 2018, 34:679-690. [25] Pan J, Xie Q, Huang H, He Y, Sun Y, Yu R, Li Y. Emotion-related consciousness detection in patients with disorders of consciousness through an EEG-based BCI system[J]. Front Hum Neurosci, 2018, 12:198. [26] Schnakers C, Perrin F, Schabus M, Majerus S, Ledoux D, Damas P, Boly M, Vanhaudenhuyse A, Bruno MA, Moonen G, Laureys S. Voluntary brain processing in disorders of consciousness[J]. Neurology, 2008, 71:1614-1620. [27] Cruse D, Chennu S, Chatelle C, Bekinschtein TA, Fernández-Espejo D, Pickard JD, Laureys S, Owen AM. Bedside detection of awareness in the vegetative state: a cohort study[J]. Lancet, 2011, 378:2088-2094. [28] Goldfine AM, Bardin JC, Noirhomme Q, Fins JJ, Schiff ND, Victor JD. Reanalysis of "Bedside detection of awareness in the vegetative state: a cohort study"[J]. Lancet, 2013, 381:289-291. [29] Wang J, Gao X, Xiang Z, Sun F, Yang Y. Evaluation of consciousness rehabilitation via neuroimaging methods [J]. Front Hum Neurosci, 2023, 17:1233499. [30] Fu J, Wu Y, Feng H, Chen F, Feng H, Pan H, Wang H. Development of a nomogram for predicting the outcome in patients with prolonged disorders of consciousness based on the multimodal evaluative information[J]. BMC Neurol, 2025, 25:175. [31] Zeng W, Wang Y, Yao P, Wang Q, Meng X, Zou L, Bai Y, Feng Z. Task-state hemodynamic responses correlate with consciousness levels and outcomes of patients with disorders of consciousness[J]. Neurosci Lett, 2025, 862:138293. [32] Kubota M, Zouridakis G. Differentiation of task complexity in long-term memory retrieval using multifractal detrended fluctuation analysis of fNIRS recordings[J]. Exp Brain Res, 2022, 240:1701-1711. [33] Wang N, He Y, Zhu S, Liu D, Chai X, He Q, Cao T, He J, Li J, Si J, Yang Y, Zhao J. Functional near-infrared spectroscopy for the assessment and treatment of patients with disorders of consciousness[J]. Front Neurol, 2025, 16:1524806. [34] Liu Y, Kang XG, Chen BB, Song CG, Liu Y, Hao JM, Yuan F, Jiang W. Detecting residual brain networks in disorders of consciousness: a resting-state fNIRS study[J]. Brain Res, 2023, 1798:148162. [35] He Y, Wang N, Liu D, Peng H, Yin S, Wang X, Wang Y, Yang Y, Si J. Assessment of residual awareness in patients with disorders of consciousness using functional near-infrared spectroscopy-based connectivity: a pilot study [J]. Neurophotonics, 2024, 11:045013. [36] Estraneo A, Moretta P, Loreto V, Lanzillo B, Cozzolino A, Saltalamacchia A, Lullo F, Santoro L, Trojano L. Predictors of recovery of responsiveness in prolonged anoxic vegetative state [J]. Neurology, 2013, 80:464-470. [37] Carelli L, Solca F, Faini A, Meriggi P, Sangalli D, Cipresso P, Riva G, Ticozzi N, Ciammola A, Silani V, Poletti B. Brain-computer interface for clinical purposes: cognitive assessment and rehabilitation[J]. Biomed Res Int, 2017, 2017:1695290. [38] Nijboer F, Sellers EW, Mellinger J, Jordan MA, Matuz T, Furdea A, Halder S, Mochty U, Krusienski DJ, Vaughan TM, Wolpaw JR, Birbaumer N, Kübler A. A P300-based brain-computer interface for people with amyotrophic lateral sclerosis [J]. Clin Neurophysiol, 2008, 119:1909-1916. [39] Li Y, Pan J, He Y, Wang F, Laureys S, Xie Q, Yu R. Detecting number processing and mental calculation in patients with disorders of consciousness using a hybrid brain-computer interface system[J]. BMC Neurol, 2015, 15:259. [40] Schettini F, Risetti M, Arico P, Formisano R, Babiloni F, Mattia D, Cincotti F. P300 latency jitter occurrence in patients with disorders of consciousness: toward a better design for brain computer interface applications[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2015:6178-6181. Chatelle C, Halder S, [41] Lulé D, Noirhomme Q, Kleih SC, Demertzi A, Bruno MA, Gosseries O, Vanhaudenhuyse A, Schnakers C, Thonnard M, Soddu A, Kübler A, Laureys S. Probing command following in patients with disorders of consciousness using a brain-computer interface [J]. Clin Neurophysiol, 2013, 124:101-106. [42] Wang F, He Y, Pan J, Xie Q, Yu R, Zhang R, Li Y. A novel audiovisual brain-computer interface and its application in awareness detection[J]. Sci Rep, 2015, 5:9962. [43] Monti MM, Vanhaudenhuyse A, Coleman MR, Boly M, Pickard JD, Tshibanda L, Owen AM, Laureys S. Willful modulation of brain activity in disorders of consciousness[J]. N Engl J Med, 2010, 362:579-589. [44] Yi Z, Pan J, Chen Z, Lu D, Cai H, Li J, Xie Q. A hybrid BCI integrating EEG and eye-tracking for assisting clinical communication in patients with disorders of consciousness[J]. IEEE Trans Neural Syst Rehabil Eng, 2024, 32:2759-2771. [45] Guger C, Spataro R, Pellas F, Allison BZ, Heilinger A, Ortner R, Cho W, Xu R, La Bella V, Edlinger G, Annen J, Mandalá G, Chatelle C, Laureys S. Assessing command-following and communication with vibro-tactile P300 brain-computer interface tools in patients with unresponsive wakefulness syndrome[J]. Front Neurosci, 2018, 12:423. S, Raghavendra K. [46] Benzy VK, Vinod AP, Subasree R, Alladi Motor imagery hand movement direction decoding using brain computer interface to aid stroke recovery and rehabilitation[J]. IEEE Trans Neural Syst Rehabil Eng, 2020, 28:3051-3062. [47] Weersink JB, Maurits NM, de Jong BM. EEG time-frequency analysis provides arguments for arm swing support in human gait control[J]. Gait Posture, 2019, 70:71-78. ZYS, Davis IS, [48] An WW, Ting KH, Au IPH, Zhang JH, Chan So WKY, Chan RHM, Cheung RTH. Neurophysiological correlates of gait retraining with real-time visual and auditory feedback[J]. IEEE Trans Neural Syst Rehabil Eng, 2019, 27: 1341-1349. Stow J, McCreadie K, McElligott J, Carroll Á. [49] Coyle D, Sensorimotor modulation assessment and brain-computer interface training in disorders of consciousness[J]. Arch Phys Med Rehabil, 2015, 96(3 Suppl):S62-S70. [50] Wang Z, Yang L, Zhou Y, Chen L, Gu B, Liu S, Xu M, He F, Ming D. Incorporating EEG and fNIRS patterns to evaluate cortical excitability and MI-BCI performance during motor training[J]. IEEE Trans Neural Syst Rehabil Eng, 2023, 31: 2872-2882. CS, [51] Baril AA, Beiser AS, Mysliwiec V, Sanchez E, DeCarli Redline S, Gottlieb DJ, Maillard P, Romero JR, Satizabal CL, Zucker JM, Seshadri S, Pase MP, Himali JJ. Slow-wave sleep and MRI markers of brain aging in a community-based sample [J]. Neurology, 2021, 96:e1462-e1469. [52] Neumann N, Hinterberger T, Kaiser J, Leins U, Birbaumer N, Kübler A. Automatic processing of self-regulation of slow cortical potentials: evidence from brain-computer communication in paralysed patients[J]. Clin Neurophysiol, 2004, 115:628-635. fMRI signal, slow cortical potential [53] He BJ, Raichle ME. The and consciousness[J]. Trends Cogn Sci, 2009, 13:302-309. [54] Zhang P, Zhou Y, Ni H, Huang Z, Tang C, Zhuge Q, Dong L, Zhang J. Altered functional connectivity of brainstem ARAS nuclei unveils the mechanisms of disorders of consciousness in sTBI: an exploratory study[J]. Neuroimage Clin, 2025, 46: 103787. on prognosis of [55] Yang F. Effect of blood-brain barrier injury patients with acute disseminated encephalomyelitis [D]. Zhengzhou: Zhengzhou University, 2024[.杨凡. 血脑屏障损伤对急性播散性脑脊髓炎患者预后的影响[D]. 郑州: 郑州大学, 2024.] [56] Gibson RM, Owen AM, Cruse D. Brain-computer interfaces for patients with disorders of consciousness[J]. Prog Brain Res, 2016, 228:241-291. F, Williamson D, Gosseries O, [57] Girard Pepin R, Seyfzadeh Duclos C. Pharmacological therapies for early and long-term recovery in disorders of consciousness: current knowledge and promising avenues[J]. Expert Rev Neurother, 2025, 25: 613-633. [58] Cardile D, Bonanno L, Ciurleo R, Calabrò RS. Disorders of consciousness and pharmacotherapy: a systematic update on drugs inducing consciousness improvement [J]. Eur J Pharmacol, 2025, 998:177532. [59] Blum C, Single C, Laichinger K, Hofmann A, Rattay TW, Adeyemi K, Riessen R, Haap M, Häberle H, Ziemann U, Mengel A, Feil K. Retrospective analysis of amantadine response and predictive factors in intensive care unit patients with non-traumatic disorders of consciousness [J]. Front Neurol, 2025, 15:1512227. A, Schiff ND. Central thalamic [60] Giacino J, Fins JJ, Machado deep brain stimulation to promote recovery from chronic posttraumatic minimally conscious state: challenges and opportunities[J]. Neuromodulation, 2012, 15:339-349. A, [61] Noirhomme Q, Soddu A, Lehembre R, Vanhaudenhuyse Boveroux P, Boly M, Laureys S. Brain connectivity in pathological and pharmacological coma [J]. Front Syst Neurosci, 2010, 4:160. [62] Duarte -Mendes P, Ramalho A, Bertollo M, Neiva HP, Marinho DA. To move without moving: a perspective article on motor imagery[J]. Front Psychol, 2025, 16:1697086. [63] Chen S, Xie N, Tang Y, Ji Y, He Z, Wang Y, Huang X, Fu J, Ge M, Liu Q, Li M, Xiao Q, Xu Y, Wang J, Jia J, Xu S. Long-term brain-computer interface functional electrical stimulation enhances neuroplasticity and functional recovery in elderly stroke: a 4.5-year longitudinal study integrating electroencephalography biomarkers and clinical assessments [J]. Research (Wash DC), 2025, 8:0984. [64] Caria A, Weber C, Brötz D, Ramos A, Ticini LF, Gharabaghi A, Braun C, Birbaumer N. Chronic stroke recovery after combined BCI training and physiotherapy: a case report[J]. Psychophysiology, 2011, 48:578-582. [65] Salisbury DB, Driver S, Parsons TD. Brain-computer interface targeting non-motor functions after spinal cord injury: a case report[J]. Spinal Cord, 2015, 53 Suppl 1:S25-S26. a [66] Kleih SC, Gottschalt L, Teichlein E, Weilbach FX. Toward P300 based brain-computer interface for aphasia rehabilitation after stroke: presentation of theoretical considerations and a pilot feasibility study[J]. Front Hum Neurosci, 2016, 10:547. [67] Chen Y, Xiao X, Dong Z, Ding J, Cruz S, Zhang M, Lu Y, Ding N, Aubinet C, Laureys S, Di H. Clinical diagnostic and prognostic value of residual language learning ability in patients with disorders of consciousness[J]. J Neurosci, 2025, 45:e1684242025. [68] Polyakov D, Robinson PA, Müller EJ, van der Lande G, Núñez P, Annen J, Gosseries O, Shriki O. Personalized stimulation therapies for disorders of consciousness: a computational approach to inducing healthy-like brain activity based on neural field theory[J]. J Neural Eng, 2025, 22:ID40425026. [69] Tarantino V, Fontana ML, Buttà A, Ficile S, Oliveri M, Mandalà G, Smirni D. Increase in EEG alpha-to-theta ratio after transcranial direct current stimulation (tDCS) in patients with disorders of consciousness: a pilot study [J]. NeuroRehabilitation, 2024, 55:440-447. [70] Wu X, Xie L, Lei J, Yao J, Li J, Ruan L, Hong J, Zheng G, Cheng Y, Long L, Wang J, Huang C, Xie Q, Zhang X, He J, Yu X, Lv S, Sun Z, Liu D, Li X, Zhu J, Yang X, Wang D, Bao Y, Maas AIR, Menon D, Xue Y, Jiang J, Feng J, Gao G; ACES Participants. Acute traumatic coma awakening by right median nerve electrical stimulation: a randomised controlled trial[J]. Intensive Care Med, 2023, 49:633-644. [71] Yang Y, He Q, Xia X, Dang Y, Chen X, He J, Zhao J. Long-term functional prognosis and related factors of spinal cord stimulation in patients with disorders of consciousness[J]. CNS Neurosci Ther, 2022, 28:1249-1258. [72] Yang Y, He Q, Dang Y, Xia X, Xu X, Chen X, Zhao J, He J. Long-term functional outcomes improved with deep brain stimulation in patients with disorders of consciousness[J]. Stroke Vasc Neurol, 2023, 8:368-378. [73] Shu Z, Wu J, Lu J, Li H, Liu J, Lin J, Liang S, Wu J, Han J, Yu N. Effective DBS treatment improves neural information transmission of patients with disorders of consciousness: an fNIRS study[J]. Physiol Meas, 2023, 44:125011. [74] Shu Z, Wu J, Li H, Liu J, Lu J, Lin J, Liang S, Wu J, Han J, Yu N. fNIRS-based functional connectivity signifies recovery in patients with disorders of consciousness after DBS treatment [J]. Clin Neurophysiol, 2023, 147:60-68. [75] Kang J, Huang L, Tang Y, Chen G, Ye W, Wang J, Feng Z. A dynamic model to predict long-term outcomes in patients with prolonged disorders of consciousness[J]. Aging (Albany NY), 2022, 14:789-799. [76] Zhang Y, Yang Y, Si J, Xia X, He J, Jiang T. Influence of inter-stimulus interval of spinal cord stimulation in patients with disorders of consciousness: a preliminary functional near-infrared spectroscopy study[J]. Neuroimage Clin, 2017, 17:1-9. [77] Si J, Dang Y, Zhang Y, Li Y, Zhang W, Yang Y, Cui Y, Lou X, He J, Jiang T. Spinal cord stimulation frequency influences the hemodynamic response in patients with disorders of consciousness[J]. Neurosci Bull, 2018, 34:659-667. [78] Vatrano M, Nemirovsky IE, Tonin P, Riganello F. Assessing consciousness through neurofeedback and neuromodulation: possibilities and challenges[J]. Life (Basel), 2023, 13:1675. [79] Adama S, Bogdan M. Assessing consciousness in patients with disorders of consciousness using soft-clustering[J]. Brain Inform, 2023, 10:16. [80] Li H, Dong L, Su W, Liu Y, Tang Z, Liao X, Long J, Zhang X, Sun X, Zhang H. Multiple patterns of EEG parameters and their role in the prediction of patients with prolonged disorders of consciousness[J]. Front Neurosci, 2025, 19:1492225. [81] Xu L, Wang J, Wang C, Ge Q, Ren Z, He C, Liu Y, Wang B, Liu Y, Xue L, He J, Zhao X, Yu Q. Evaluating brain activity in patients with chronic disorders of consciousness after traumatic brain injury using EEG microstate analysis during hyperbaric oxygen therapy[J]. CNS Neurosci Ther, 2025, 31: e70220. [82] Barra A, Bodien YG, Tan CO, Martens G, Malone C, Giacino JT. Behavioral fluctuation in disorders of consciousness: a retrospective analysis[J]. Arch Phys Med Rehabil, 2025, 106: 1505-1513. [83] Zhang H, Chai S, Shan D, Liu G, Zhang Y. Combining quantified EEG with clinical measures to better predict outcomes of acute disorders of consciousness[J]. Neurophysiol Clin, 2025, 55:103048. [84] Okahara Y, Takano K, Odaka K, Uchino Y, Kansaku K. Detecting passive and active response in patients with behaviourally diagnosed unresponsive wakefulness syndrome [J]. Neurosci Res, 2023, 196:23-31. [85] Jin J, Xiao R, Daly I, Miao Y, Wang X, Cichocki A. Internal feature selection method of CSP based on L1-norm and Dempster-Shafer theory[J]. IEEE Trans Neural Netw Learn Syst, 2021, 32:4814-4825. [86] Jin J, Wang Z, Xu R, Liu C, Wang X, Cichocki A. Robust similarity measurement based on a novel time filter for SSVEPs detection[J]. IEEE Trans Neural Netw Learn Syst, 2023, 34: 4096-4105. [87] Jin J, Miao Y, Daly I, Zuo C, Hu D, Cichocki A. Correlation-based channel selection and regularized feature optimization for MI-based BCI[J]. Neural Netw, 2019, 118:262-270. Albahri [88] Albahri AS, Al-Qaysi ZT, Alzubaidi L, Alnoor A, OS, Alamoodi AH, Bakar AA. A systematic review of using deep learning technology in the steady-state visually evoked potential-based brain-computer interface applications: current trends and future trust methodology[J]. Int J Telemed Appl, 2023:7741735. [89] Qi Z, Zeng W, Zang D, Wang Z, Luo L, Wu X, Yu J, Mao Y. Classifying disorders of consciousness using a novel dual-level and dual-modal graph learning model[J]. J Transl Med, 2024, 22:950. [90] Yang H, Wu H, Kong L, Luo W, Xie Q, Pan J, Quan W, Hu L, Li D, Wu X, Liang H, Qin P. Precise detection of awareness in disorders of consciousness using deep learning framework [J]. Neuroimage, 2024, 290:120580. [91] Bhardwaj T, Edlow BL, Young MJ. Ethically translating advanced neurotechnologies for disorders of consciousness: a survey of clinicians' perspectives[J]. Neurocrit Care, 2025, 42: 757-771. [92] Society of Neurosurgery of Chinese Medical Association, Society of Cerebrovascular Surgery of Chinese Stroke Association. Chinese expert consensus on implementation and management of brain-computer interface clinical research in neurological diseases[J]. Zhonghua Yi Xue Za Zhi, 2024, 104: 2105-2112[.中华医学会神经外科学分会, 中国卒中学会脑血管外科分会. 神经系统疾病脑机接口临床研究实施与管理的中国专家共识[J]. 中华医学杂志, 2024, 104:2105-2112.] [93] Zhao JZ. The role and responsibility of clinical neuroscience in brain-computer interface clinical research[J]. Zhonghua Yi Xue Za Zhi, 2024, 104:2102-2104[.赵继宗. 临床神经科学在脑机接口临床研究中的担当与责任[J]. 中华医学杂志, 2024, 104:2102-2104.] [94] Zhao JZ. Reflections on the clinical practice of network neurosurgery in the 21st century[J]. Kong Jun Jun Yi Da Xue Xue Bao, 2024, 45:361-363[.赵继宗. 对21世纪网络神经外科临床实践的思考[J]. 空军军医大学学报, 2024, 45:361-363.] [95] Kazazian K, Monti MM, Owen AM. Functional neuroimaging in disorders of consciousness: towards clinical implementation[J]. Brain, 2025, 148:2283-2298. [96] Chen XG, Chen JJ, Liu BC, Gao XR. Research progress of brain-computer interface in 2022[J]. Xin Hao Chu Li, 2023, 39:1355-1366[.陈小刚, 陈菁菁, 刘冰川, 高小榕. 2022年脑机接口研究进展[J]. 信号处理, 2023, 39:1355-1366.] [97] Liang L, Zhang Q, Zhou J, Li W, Gao X. Dataset evaluation method and application for performance testing of SSVEP-BCI decoding algorithm[J]. Sensors (Basel), 2023, 23:6310. [98] He Q, Yang Y, Ge P, Li S, Chai X, Luo Z, Zhao J. The brain nebula: minimally invasive brain-computer interface by endovascular neural recording and stimulation [J]. J Neurointerv Surg, 2024, 16:1237-1243. [99] Han JJ. Synchron receives FDA approval to begin early feasibility study of their endovascular, brain-computer interface device[J]. Artif Organs, 2021, 45:1134-1135. [100] Mitchell P, Lee SCM, Yoo PE, Morokoff A, Sharma RP, Williams DL, MacIsaac C, Howard ME, Irving L, Vrljic I, Williams C, Bush S, Balabanski AH, Drummond KJ, Desmond P, Weber D, Denison T, Mathers S, O'Brien TJ, Mocco J, Grayden DB, Liebeskind DS, Opie NL, Oxley TJ, Campbell BCV. Assessment of safety of a fully implanted endovascular brain-computer interface for severe paralysis in 4 patients: the Stentrode With Thought-Controlled Digital Switch (SWITCH) study[J]. JAMA Neurol, 2023, 80:270-278. [101] Shah AM. New development in brain-computer interface platforms: 1-year results from the SWITCH trial[J]. Artif Organs, 2023, 47:615-616. [102] Raveendran S, S K, A G R, Kenchaiah R, Sahoo J, Kumar S, M K F, Mundlamuri RC, Bansal S, V S B, R S. Functional connectivity in EEG: a multiclass classification approach for disorders of consciousness [J]. Front Neurosci, 2025, 19: 1550581. |