[1] GBD Epilepsy Collaborators. Global, regional, and national burden of epilepsy, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021[J]. Lancet Public Health, 2025, 10:e203-e227. [2] Asadi-Pooya AA, Brigo F, Lattanzi S, Blumcke I. Adult epilepsy [J]. Lancet, 2023, 402:412-424. [3] Zhang YM, Wei YM, Tang ZG. Progress in surgical diagnosis and treatment of drug-resistant epilepsy[J]. Shen Jing Sun Shang Yu Gong Neng Chong Jian, 2023, 18:346-348.[张洋铭,魏怡名, 唐振刚. 难治性癫痫的外科诊疗进展[J]. 神经损伤与功能重建, 2023, 18:346-348.] [4] Zhang JG, Xie HT, Yang AC. Neuromodulation: clinical advances and future perspectives[J]. Zhongguo Xian Dai Shen Jing Ji Bing Za Zhi, 2025, 25:1-10.[张建国, 解虎涛, 杨岸超. 神经调控技术临床应用进展与展望[J]. 中国现代神经疾病杂志, 2025, 25:1-10.] [5] Trevelyan AJ, Marks VS, Graham RT, Denison T, Jackson A, Smith EH. On brain stimulation in epilepsy[J]. Brain, 2025, 148:746-752. [6] Riklan M, Cullinan T, Shulman M, Cooper IS. A psychometric study of chronic cerebellar stimulation in man [J]. Biol Psychiatry, 1976, 11:543-574. [7] Togo M, Lyu D, Huang W, Pantis S, Fisher R, Matsumoto R, Buch V, Parvizi J. Electrophysiological connections linking medial pulvinar, anterior nuclei of the thalamus and the hippocampus[J]. Brain, 2025, 148:4315-4324. [8] Salanova V, Sperling MR, Gross RE, Irwin CP, Vollhaber JA, Giftakis JE, Fisher RS; SANTÉ Study Group. The SANTÉ study at 10 years of follow-up: effectiveness, safety, and sudden unexpected death in epilepsy[J]. Epilepsia, 2021, 62: 1306-1317. [9] Fisher R, Salanova V, Witt T, Worth R, Henry T, Gross R, Oommen K, Osorio I, Nazzaro J, Labar D, Kaplitt M, Sperling M, Sandok E, Neal J, Handforth A, Stern J, DeSalles A, Chung S, Shetter A, Bergen D, Bakay R, Henderson J, French J, Baltuch G, Rosenfeld W, Youkilis A, Marks W, Garcia P, Barbaro N, Fountain N, Bazil C, Goodman R, McKhann G, Babu Krishnamurthy K, Papavassiliou S, Epstein C, Pollard J, Tonder L, Grebin J, Coffey R, Graves N; SANTE Study Group. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy[J]. Epilepsia, 2010, 51:899-908. [10] Xu C, Qi L, Wang X, Schaper FLWVJ, Wu D, Yu T, Yan X, Jin G, Wang Q, Wang X, Huang X, Wang Y, Chen Y, Liu J, Wang Y, Horn A, Fisher RS, Ren L. Functional connectomic profile correlates with effective anterior thalamic stimulation for refractory epilepsy[J]. Brain Stimul, 2023, 16:1302-1309. [11] Gouveia FV, Warsi NM, Suresh H, Matin R, Ibrahim GM. Neurostimulation treatments for epilepsy: deep brain stimulation, responsive neurostimulation and vagus nerve stimulation[J]. Neurotherapeutics, 2024, 21:e00308. [12] Peltola J, Colon AJ, Pimentel J, Coenen VA, Gil-Nagel A, Gonçalves Ferreira A, Lehtimäki K, Ryvlin P, Taylor RS, Ackermans L, Ardesch J, Bentes C, Bosak M, Burneo JG, Chamadoira C, Elger CE, Erőss L, Fabo D, Faulkner H, Gawlowicz J, Gharabaghi A, Iacoangeli M, Janszky J, Järvenpää S, Kaufmann E, Kho KH, Kumlien E, Laufs H, Lettieri C, Linhares P, Noachtar S, Parrent A, Pataraia E, Patel NK, Peralta AR, Rácz A, Campos AR, Rego R, Ricciuti RA, Rona S, Rouhl RPW, Schulze-Bonhage A, Schuurman R, Sprengers M, Sufianov A, Temel Y, Theys T, Van Paesschen W, Van Roost D, Vaz R, Vonck K, Wagner L, Zwemmer J, Abouihia A, Brionne TC, Gielen F, Boon PAJM; MORE Study Group. Deep brain stimulation of the anterior nucleus of the thalamus in drug-resistant epilepsy in the MORE Multicenter Patient Registry[J]. Neurology, 2023, 100:e1852-e1865. [13] Velasco AL, Velasco F, Jiménez F, Velasco M, Castro G, Carrillo-Ruiz JD, Fanghänel G, Boleaga B. Neuromodulation of the centromedian thalamic nuclei in the treatment of generalized seizures and the improvement of the quality of life in patients with Lennox-Gastaut syndrome[J]. Epilepsia, 2006, 47:1203-1212. [14] Dalic LJ, Warren AEL, Bulluss KJ, Thevathasan W, Roten A, Churilov L, Archer JS. DBS of thalamic centromedian nucleus for Lennox-Gastaut syndrome (ESTEL trial)[J]. Ann Neurol, 2022, 91:253-267. [15] Benabid AL, Minotti L, Koudsié A, de Saint Martin A, Hirsch E. Antiepileptic effect of high-frequency stimulation of the subthalamic nucleus (corpus luysi) in a case of medically intractable epilepsy caused by focal dysplasia: a 30-month follow-up: technical case report[J]. Neurosurgery, 2002, 50:1385-1392. [16] Wille C, Steinhoff BJ, Altenmüller DM, Staack AM, Bilic S, Nikkhah G, Vesper J. Chronic high-frequency deep-brain stimulation in progressive myoclonic epilepsy in adulthood: report of five cases[J]. Epilepsia, 2011, 52:489-496. [17] Pizzo F, Carron R, Laguitton V, Clement A, Giusiano B, Bartolomei F. Medial pulvinar stimulation for focal drug-resistant epilepsy: interim 12-month results of the PULSE study [J]. Front Neurol, 2024, 15:1480819. [18] Chandran AS, Joshi S, Suresh S, Savarraj J, Snyder K, Vasconcellos FN, Vakilna YS, Modiano YA, Pati S, Tandon N. Efficacy of neuromodulation of the pulvinar nucleus for drug-resistant epilepsy[J]. Epilepsia, 2025, 66:1059-1070. [19] Yang AI, Isbaine F, Alwaki A, Gross RE. Multitarget deep brain stimulation for epilepsy[J]. J Neurosurg, 2023, 140:210-217. [20] Velasco AL, Velasco F, Velasco M, Trejo D, Castro G, Carrillo-Ruiz JD. Electrical stimulation of the hippocampal epileptic foci for seizure control: a double-blind, long-term follow-up study [J]. Epilepsia, 2007, 48:1895-1903. [21] Cukiert A, Cukiert CM, Burattini JA, Lima AM. Seizure outcome after hippocampal deep brain stimulation in a prospective cohort of patients with refractory temporal lobe epilepsy[J]. Seizure, 2014, 23:6-9. [22] Fisher RS. Deep brain stimulation of thalamus for epilepsy[J]. Neurobiol Dis, 2023, 179:106045. [23] Kaufmann E, Peltola J, Colon AJ, Lehtimäki K, Majtanik M, Mai JK, Bóné B, Bentes C, Coenen V, Gil-Nagel A, Goncalves-Ferreira AJ, Ryvlin P, Taylor R, Brionne TC, Gielen F, Song S, Boon P; MORE Study Group. Long-term evaluation of anterior thalamic deep brain stimulation for epilepsy in the European MORE registry[J]. Epilepsia, 2024, 65:2438-2458. [24] Vetkas A, Fomenko A, Germann J, Sarica C, Iorio-Morin C, Samuel N, Yamamoto K, Milano V, Cheyuo C, Zemmar A, Elias G, Boutet A, Loh A, Santyr B, Gwun D, Tasserie J, Kalia SK, Lozano AM. Deep brain stimulation targets in epilepsy: systematic review and meta-analysis of anterior and centromedian thalamic nuclei and hippocampus[J]. Epilepsia, 2022, 63:513-524. [25] Vetkas A, Germann J, Elias G, Loh A, Boutet A, Yamamoto K, Sarica C, Samuel N, Milano V, Fomenko A, Santyr B, Tasserie J, Gwun D, Jung HH, Valiante T, Ibrahim GM, Wennberg R, Kalia SK, Lozano AM. Identifying the neural network for neuromodulation in epilepsy through connectomics and graphs [J]. Brain Commun, 2022, 4:fcac092. [26] Zhang Y, Wu X, Ding J, Su B, Chen Z, Xiao Z, Wu C, Wei D, Sun J, Luo F, Yin H, Fan H. Wireless-powering deep brain stimulation platform based on 1D-structured magnetoelectric nanochains applied in antiepilepsy treatment[J]. ACS Nano, 2023, 17:15796-15809. [27] Marchesi O, Bonacchi R, Valsasina P, Rocca MA, Filippi M. Resting state effective connectivity abnormalities of the Papez circuit and cognitive performance in multiple sclerosis[J]. Mol Psychiatry, 2022, 27:3913-3919. [28] Sainburg LE, Janson AP, Johnson GW, Jiang JW, Rogers BP, Chang C, Englot DJ, Morgan VL. Structural disconnection relates to functional changes after temporal lobe epilepsy surgery [J]. Brain, 2023, 146:3913-3922. [29] Aiello G, Ledergerber D, Dubcek T, Stieglitz L, Baumann C, Polanìa R, Imbach L. Functional network dynamics between the anterior thalamus and the cortex in deep brain stimulation for epilepsy[J]. Brain, 2023, 146:4717-4735. [30] Velasco F, Velasco M, Jiménez F, Velasco AL, Brito F, Rise M, Carrillo-Ruiz JD. Predictors in the treatment of difficult-to-control seizures by electrical stimulation of the centromedian thalamic nucleus[J]. Neurosurgery, 2000, 47:295-305. [31] Velasco F, Velasco M, Ogarrio C, Fanghanel G. Electrical stimulation of the centromedian thalamic nucleus in the treatment of convulsive seizures: a preliminary report [J]. Epilepsia, 1987, 28:421-430. [32] Yang JC, Bullinger KL, Isbaine F, Alwaki A, Opri E, Willie JT, Gross RE. Centromedian thalamic deep brain stimulation for drug-resistant epilepsy: single-center experience [J]. J Neurosurg, 2022, 137:1591-1600. [33] Warren AEL, Dalic LJ, Bulluss KJ, BAppSci AR, Thevathasan W, Archer JS. The optimal target and connectivity for deep brain stimulation in Lennox-Gastaut syndrome[J]. Ann Neurol, 2022, 92:61-74. [34] Park S, Permezel F, Agashe S, Osman G, Simpson HD, Miller KJ, Van Gompel JJ, Starnes K, Lundstrom BN, Worrell GA, Gregg NM. Centromedian thalamic deep brain stimulation for idiopathic generalized epilepsy: connectivity and target optimization[J]. Epilepsia, 2024, 65:e197-e203. [35] Warren AEL, Harvey AS, Vogrin SJ, Bailey C, Davidson A, Jackson GD, Abbott DF, Archer JS. The epileptic network of Lennox-Gastaut syndrome: cortically driven and reproducible across age[J]. Neurology, 2019, 93:e215-e226. [36] Dalic LJ, Warren AEL, Young JC, Thevathasan W, Roten A, Bulluss KJ, Archer JS. Cortex leads the thalamic centromedian nucleus in generalized epileptic discharges in Lennox-Gastaut syndrome[J]. Epilepsia, 2020, 61:2214-2223. [37] Herz DM, Frank MJ, Tan H, Groppa S. Subthalamic control of impulsive actions: insights from deep brain stimulation in Parkinson's disease[J]. Brain, 2024, 147:3651-3664. [38] Chabardès S, Kahane P, Minotti L, Koudsie A, Hirsch E, Benabid AL. Deep brain stimulation in epilepsy with particular reference to the subthalamic nucleus[J]. Epileptic Disord, 2002, 4 Suppl 3:S83-S93. [39] Shan M, Mao H, Hu T, Xie H, Ye L, Cheng H. Deep brain stimulation of the subthalamic nucleus for a patient with drug resistant juvenile myoclonic epilepsy: 1 year follow-up[J]. Neurol Sci, 2024, 45:4997-5002. [40] Yan H, Ren L, Yu T. Deep brain stimulation of the subthalamic nucleus for epilepsy[J]. Acta Neurol Scand, 2022, 146:798-804. [41] Baker KB, Montgomery EB Jr, Rezai AR, Burgess R, Lüders HO. Subthalamic nucleus deep brain stimulus evoked potentials: physiological and therapeutic implications[J]. Mov Disord, 2002, 17:969-983. [42] Prabhu S, Chabardès S, Sherdil A, Devergnas A, Michallat S, Bhattacharjee M, Mathieu H, David O, Piallat B. Effect of subthalamic nucleus stimulation on penicillin induced focal motor seizures in primate[J]. Brain Stimul, 2015, 8:177-184. [43] Ren L, Yu T, Wang D, Wang X, Ni D, Zhang G, Bartolomei F, Wang Y, Li Y. Subthalamic nucleus stimulation modulates motor epileptic activity in humans[J]. Ann Neurol, 2020, 88: 283-296. [44] Xue T, Wang S, Chen S, Wang H, Liu C, Shi L, Bai Y, Zhang C, Han C, Zhang J. Subthalamic nucleus stimulation attenuates motor seizures via modulating the nigral orexin pathway[J]. Front Neurosci, 2023, 17:1157060. [45] Cortes N, Ladret HJ, Abbas-Farishta R, Casanova C. The pulvinar as a hub of visual processing and cortical integration [J]. Trends Neurosci, 2024, 47:120-134. [46] Rosenberg DS, Mauguière F, Demarquay G, Ryvlin P, Isnard J, Fischer C, Guénot M, Magnin M. Involvement of medial pulvinar thalamic nucleus in human temporal lobe seizures[J]. Epilepsia, 2006, 47:98-107. [47] Filipescu C, Lagarde S, Lambert I, Pizzo F, Trébuchon A, McGonigal A, Scavarda D, Carron R, Bartolomei F. The effect of medial pulvinar stimulation on temporal lobe seizures[J]. Epilepsia, 2019, 60:e25-e30. [48] Acerbo E, Jegou A, Lagarde S, Pizzo F, Makhalova J, Trébuchon A, Bénar CG, Bartolomei F, Carron R. Frequency-specific alterations in brain connectivity induced by pulvinar stimulation[J]. Epilepsia, 2025, 66:2690-2702. [49] Rosenberg DS, Mauguière F, Catenoix H, Faillenot I, Magnin M. Reciprocal thalamocortical connectivity of the medial pulvinar: a depth stimulation and evoked potential study in human brain[J]. Cereb Cortex, 2009, 19:1462-1473. [50] McGinn R, Von Stein EL, Datta A, Wu T, Lusk Z, Nam S, Dilts-Garcha M, Fisher RS, Buch V, Parvizi J. Ictal involvement of the pulvinar and the anterior nucleus of the thalamus in patients with refractory epilepsy[J]. Neurology, 2024, 103: e210039. [51] Sarria-Estrada S, Santamarina E, Quintana M, Pareto D, Sueiras M, Auger C, Toledo M, Rovira A. Magnetic resonance imaging findings in focal-onset status epilepticus[J]. Eur J Neurol, 2022, 29:3-11. [52] Vakilna YS, Chaitanya G, Hafeez MU, Ilyas A, Saranathan M, Gavvala J, Tandon N, Pati S. Pulvinar neuromodulation for seizure monitoring and network modulation in temporal plus epilepsy[J]. Ann Clin Transl Neurol, 2023, 10:1254-1259. [53] Serra C, Türe U, Krayenbühl N, Şengül G, Yaşargil DC, Yaşargil MG. Topographic classification of the thalamus surfaces related to microneurosurgery: a white matter fiber microdissection study[J]. World Neurosurg, 2017, 97:438-452. [54] Witt JA, Becker AJ, Helmstaedter C. The multifactorial etiology of cognitive deficits in epilepsy and the neuropathology of mesial temporal lobe epilepsy beyond hyperphosphorylated tau [J]. Alzheimers Dement, 2023, 19:3231-3232. [55] Ammothumkandy A, Corona L, Ravina K, Wolseley V, Nelson J, Atai N, Abedi A, Jimenez N, Armacost M, D'Orazio LM, Zuverza-Chavarria V, Cayce A, McCleary C, Nune G, Kalayjian L, Lee DJ, Lee B, Chow RH, Heck C, Russin JJ, Liu CY, Smith JAD, Bonaguidi MA. Human adult neurogenesis loss corresponds with cognitive decline during epilepsy progression [J]. Cell Stem Cell, 2025, 32:293-301. [56] Cukiert A, Cukiert CM, Burattini JA, Mariani PP. Long-term seizure outcome during continuous bipolar hippocampal deep brain stimulation in patients with temporal lobe epilepsy with or without mesial temporal sclerosis: an observational, open-label study[J]. Epilepsia, 2021, 62:190-197. [57] Wang S, Zhao M, Li T, Zhang C, Zhou J, Wang M, Wang X, Ma K, Luan G, Guan Y. Long-term efficacy and cognitive effects of bilateral hippocampal deep brain stimulation in patients with drug-resistant temporal lobe epilepsy[J]. Neurol Sci, 2021, 42:225-233. [58] Al-Kraimeen LM, Ababneh O, Yassin A. Deep brain stimulation targets in epilepsy: systematic review and meta-analysis of anterior and centromedian thalamic nuclei and hippocampus [J]. Epilepsia, 2022, 63:1883-1884. [59] Lim SN, Lee CY, Lee ST, Tu PH, Chang BL, Lee CH, Cheng MY, Chang CW, Tseng WE, Hsieh HY, Chiang HI, Wu T. Low and high frequency hippocampal stimulation for drug-resistant mesial temporal lobe epilepsy[J]. Neuromodulation, 2016, 19: 365-372. [60] Paschen E, Kleis P, Vieira DM, Heining K, Boehler C, Egert U, Häussler U, Haas CA. On-demand low-frequency stimulation for seizure control: efficacy and behavioural implications[J]. Brain, 2024, 147:505-520. [61] Nicolson A, Chadwick DW, Smith DF. The coexistence of idiopathic generalized epilepsy and partial epilepsy [J]. Epilepsia, 2004, 45:682-685. [62] Sherdil A, Chabardès S, David O, Piallat B. Coherence between the hippocampus and anterior thalamic nucleus as a tool to improve the effect of neurostimulation in temporal lobe epilepsy: an experimental study[J]. Brain Stimul, 2020, 13:1678-1686. [63] Skelton HM, Bullinger K, Isbaine F, Lau JC, Willie JT, Gross RE. Optimal hippocampal targeting in responsive neurostimulation for mesial temporal lobe epilepsy [J]. J Neurosurg, 2024, 141:1105-1114. [64] Cendes F, Sakamoto AC, Spreafico R, Bingaman W, Becker AJ. Epilepsies associated with hippocampal sclerosis [J]. Acta Neuropathol, 2014, 128:21-37. [65] Zijlmans M, Zweiphenning W, van Klink N. Changing concepts in presurgical assessment for epilepsy surgery[J]. Nat Rev Neurol, 2019, 15:594-606. [66] Piper RJ, Richardson RM, Worrell G, Carmichael DW, Baldeweg T, Litt B, Denison T, Tisdall MM. Towards network-guided neuromodulation for epilepsy[J]. Brain, 2022, 145:3347-3362. [67] Wang HE, Woodman M, Triebkorn P, Lemarechal JD, Jha J, Dollomaja B, Vattikonda AN, Sip V, Medina Villalon S, Hashemi M, Guye M, Makhalova J, Bartolomei F, Jirsa V. Delineating epileptogenic networks using brain imaging data and personalized modeling in drug-resistant epilepsy[J]. Sci Transl Med, 2023, 15:eabp8982. [68] Jirsa V, Wang H, Triebkorn P, Hashemi M, Jha J, Gonzalez-Martinez J, Guye M, Makhalova J, Bartolomei F. Personalised virtual brain models in epilepsy[J]. Lancet Neurol, 2023, 22: 443-454. [69] Yu T. Individualized brain stimulation strategy: a new perspective of neuromodulation for refractory epilepsy[J]. Shi Yong Yi Xue Za Zhi, 2022, 38:2117-2122.[遇涛. 个体化脑刺激:神经调控治疗难治性癫痫的新方向[J]. 实用医学杂志, 2022, 38:2117-2122.] |