[1] Wang S, Sun ST, Zhang XY, Ding HR, Yuan Y, He JJ, Wang MS, Yang B, Li YB. The evolution of single-cell RNA sequencing technology and application:progress and perspectives[J]. Int J Mol Sci, 2023, 24:2943. [2] Huang K, Xu Y, Feng T, Lan H, Ling F, Xiang H, Liu Q. The advancement and application of the single-cell transcriptome in biological and medical research[J]. Biology (Basel), 2024, 13:451. [3] Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A, Lao K, Surani MA. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nat Methods, 2009, 6:377-382. [4] Islam S, Kjällquist U, Moliner A, Zajac P, Fan JB, Lönnerberg P, Linnarsson S. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq[J]. Genome Res, 2011, 21:1160-1167. [5] Molla Desta G, Birhanu AG. Advancements in single-cell RNA sequencing and spatial transcriptomics:transforming biomedical research[J]. Acta Biochim Pol, 2025, 72:13922. [6] Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, Trombetta JJ, Weitz DA, Sanes JR, Shalek AK, Regev A, McCarroll SA. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets[J]. Cell, 2015, 161:1202-1214. [7] Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells[J]. Cell, 2015, 161:1187-1201. [8] Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, Gregory MT, Shuga J, Montesclaros L, Underwood JG, Masquelier DA, Nishimura SY, Schnall-Levin M, Wyatt PW, Hindson CM, Bharadwaj R, Wong A, Ness KD, Beppu LW, Deeg HJ, McFarland C, Loeb KR, Valente WJ, Ericson NG, Stevens EA, Radich JP, Mikkelsen TS, Hindson BJ, Bielas JH. Massively parallel digital transcriptional profiling of single cells[J]. Nat Commun, 2017, 8:14049. [9] Su G, Qin X, Enninful A, Bai Z, Deng Y, Liu Y, Fan R. Spatial multi-omics sequencing for fixed tissue via DBiT-seq[J]. STAR Protoc, 2021, 2:100532. [10] Liao Y, Liu Z, Zhang Y, Lu P, Wen L, Tang F. High-throughput and high-sensitivity full-length single-cell RNA-seq analysis on third-generation sequencing platform[J]. Cell Discov, 2023, 9:5. [11] Fan X, Tang D, Liao Y, Li P, Zhang Y, Wang M, Liang F, Wang X, Gao Y, Wen L, Wang D, Wang Y, Tang F. Single-cell RNA-seq analysis of mouse preimplantation embryos by third-generation sequencing[J]. PLoS Biol, 2020, 18:e3001017. [12] Hagemann-Jensen M, Ziegenhain C, Chen P, Ramsköld D, Hendriks GJ, Larsson AJM, Faridani OR, Sandberg R. Single-cell RNA counting at allele and isoform resolution using Smart-seq3[J]. Nat Biotechnol, 2020, 38:708-714. [13] Jovic D, Liang X, Zeng H, Lin L, Xu F, Luo Y. Single-cell RNA sequencing technologies and applications:a brief overview[J]. Clin Transl Med, 2022, 12:e694. [14] Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M, Hoffman P, Stoeckius M, Papalexi E, Mimitou EP, Jain J, Srivastava A, Stuart T, Fleming LM, Yeung B, Rogers AJ, McElrath JM, Blish CA, Gottardo R, Smibert P, Satija R. Integrated analysis of multimodal single-cell data[J]. Cell, 2021, 184:3573-3587. [15] Huang X, Liu R, Yang S, Chen X, Li H. scAnnoX:an R package integrating multiple public tools for single-cell annotation[J]. PeerJ, 2024, 12:e17184. [16] Xie Y, Chen H, Chellamuthu VR, Lajam ABM, Albani S, Low AHL, Petretto E, Behmoaras J. Comparative analysis of single-cell RNA sequencing methods with and without sample multiplexing[J]. Int J Mol Sci, 2024, 25:3828. [17] Misevic G. Single-cell omics analyses with single molecular detection:challenges and perspectives[J]. J Biomed Res, 2021, 35:264-276. [18] He J, Shen J, Luo W, Han Z, Xie F, Pang T, Liao L, Guo Z, Li J, Li Y, Chen H. Research progress on application of single-cell TCR/BCR sequencing technology to the tumor immune microenvironment, autoimmune diseases, and infectious diseases[J]. Front Immunol, 2022, 13:969808. [19] Schafflick D, Xu CA, Hartlehnert M, Cole M, Schulte-Mecklenbeck A, Lautwein T, Wolbert J, Heming M, Meuth SG, Kuhlmann T, Gross CC, Wiendl H, Yosef N, Meyer Zu Horste G. Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in multiple sclerosis[J]. Nat Commun, 2020, 11:247. [20] Sankowski R, Süß P, Benkendorff A, Böttcher C, Fernandez-Zapata C, Chhatbar C, Cahueau J, Monaco G, Gasull AD, Khavaran A, Grauvogel J, Scheiwe C, Shah MJ, Heiland DH, Schnell O, Markfeld-Erol F, Kunze M, Zeiser R, Priller J, Prinz M. Multiomic spatial landscape of innate immune cells at human central nervous system borders[J]. Nat Med, 2024, 30:186-198. [21] Absinta M, Maric D, Gharagozloo M, Garton T, Smith MD, Jin J, Fitzgerald KC, Song A, Liu P, Lin JP, Wu T, Johnson KR, McGavern DB, Schafer DP, Calabresi PA, Reich DS. A lymphocyte-microglia-astrocyte axis in chronic active multiple sclerosis[J]. Nature, 2021, 597:709-714. [22] Cao L, Chen C, Pi W, Zhang Y, Xue S, Yong VW, Xue M. Immune mechanisms in multiple sclerosis:CD3 levels on CD28+ CD4+ T cells link antibody responses to human herpesvirus 6[J]. Cytokine, 2025, 187:156866. [23] Cotzomi E, Stathopoulos P, Lee CS, Ritchie AM, Soltys JN, Delmotte FR, Oe T, Sng J, Jiang R, Ma AK, Vander Heiden JA, Kleinstein SH, Levy M, Bennett JL, Meffre E, O'Connor KC. Early B cell tolerance defects in neuromyelitis opticafavour anti-AQP4 autoantibody production[J]. Brain, 2019, 142:1598-1615. [24] Zhang W, Han Y, Huang H, Su Y, Ren H, Qi C, Li J, Yang H, Xu J, Chang G, Qiu W, Liu Q, Chang T. CD22 blockade exacerbates neuroinflammation in neuromyelitis optica spectrum disorder[J]. J Neuroinflammation, 2024, 21:313. [25] Qi C, Hao H, Zhang W, Fu Y, Han Y, Li J, Chen L, Cui G, Liu Q, Li Y, Wang X, Wang MW, Liu Q. Targeting formyl peptide receptor 2 to suppress neuroinflammation in neuromyelitis optica spectrum disorder[J]. Theranostics, 2025, 15:4495-4506. [26] de Bruijn MAAM, Leypoldt F, Dalmau J, Lee ST, Honnorat J, Clardy SL, Irani SR, Easton A, Kunchok A, Titulaer MJ. Autoimmune encephalitis[J]. Nat Rev Dis Primers, 2025, 11:65. [27] Feng J, Fan S, Sun Y, Zhang Z, Ren H, Li W, Cui L, Peng B, Ren X, Zhang W, Guan H, Wang J. Study of B cell repertoire in patients with anti-N-methyl-D-aspartate receptor encephalitis[J]. Front Immunol, 2020, 11:1539. [28] Li S, Hu X, Wang M, Yu L, Zhang Q, Xiao J, Hong Z, Zhou D, Li J. Single-cell RNA sequencing reveals diverse B cell phenotypes in patients with anti-NMDAR encephalitis[J]. Psychiatry Clin Neurosci, 2024, 78:197-208. [29] Jin W, Yang Q, Peng Y, Yan C, Li Y, Luo Z, Xiao B, Xu L, Yang H. Single-cell RNA-seq reveals transcriptional heterogeneity and immune subtypes associated with disease activity in human myasthenia gravis[J]. Cell Discov, 2021, 7:85. [30] Verdier J, Fayet OM, Hemery E, Truffault F, Pinzón N, Demeret S, Behin A, Fadel E, Guihaire J, Corneau A, Blanc C, Berrih-Aknin S, Le Panse R. Single-cell mass cytometry on peripheral cells in Myasthenia Gravis identifies dysregulation of innate immune cells[J]. Front Immunol, 2023, 14:1083218. [31] Zhong H, Huan X, Zhao R, Su M, Yan C, Song J, Xi J, Zhao C, Luo F, Luo S. Peripheral immune landscape for hypercytokinemia in myasthenic crisis utilizing single-cell transcriptomics[J]. J Transl Med, 2023, 21:564. [32] Jiang R, Fichtner ML, Hoehn KB, Pham MC, Stathopoulos P, Nowak RJ, Kleinstein SH, O'Connor KC. Single-cell repertoire tracing identifies rituximab-resistant B cells during myasthenia gravis relapses[J]. JCI Insight, 2020, 5:e136471. |