1 |
World Health Organization (WHO). Epilepsy: a public health imperative. Geneva: World Health Organization, 2019: 10- 18.
|
2 |
Scheffer IE, Berkovic S, Capovilla G, Connolly MB, French J, Guilhoto L, Hirsch E, Jain S, Mathern GW, Moshé SL, Nordli DR, Perucca E, Tomson T, Wiebe S, Zhang YH, Zuberi SM. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia, 2017, 58: 512- 521.
doi: 10.1111/epi.13709
|
3 |
Löscher W, Potschka H, Sisodiya SM, Vezzani A. Drug resistance in epilepsy: clinical impact, potential mechanisms, and new innovative treatment options. Pharmacol Rev, 2020, 72: 606- 638.
doi: 10.1124/pr.120.019539
|
4 |
Jehi L, Jette N, Kwon CS, Josephson CB, Burneo JG, Cendes F, Sperling MR, Baxendale S, Busch RM, Triki CC, Cross JH, Ekstein D, Englot DJ, Luan G, Palmini A, Rios L, Wang X, Roessler K, Rydenhag B, Ramantani G, Schuele S, Wilmshurst JM, Wilson S, Wiebe S. Timing of referral to evaluate for epilepsy surgery: expert consensus recommendations from the Surgical Therapies Commission of the International League Against Epilepsy. Epilepsia, 2022, 63: 2491- 2506.
doi: 10.1111/epi.17350
|
5 |
Lüders HO, Najm I, Nair D, Widdess-Walsh P, Bingman W. The epileptogenic zone: general principles. Epileptic Disord, 2006, 8(Suppl 2): S1- S9.
|
6 |
Royer J, Bernhardt BC, Larivière S, Gleichgerrcht E, Vorderwülbecke BJ, Vulliémoz S, Bonilha L. Epilepsy and brain network hubs. Epilepsia, 2022, 63: 537- 550.
doi: 10.1111/epi.17171
|
7 |
Larivière S, Bernasconi A, Bernasconi N, Bernhardt BC. Connectome biomarkers of drug-resistant epilepsy. Epilepsia, 2021, 62: 6- 24.
doi: 10.1111/epi.16753
|
8 |
Avena-Koenigsberger A, Misic B, Sporns O. Communication dynamics in complex brain networks. Nat Rev Neurosci, 2017, 19: 17- 33.
doi: 10.1038/ncb3444
|
9 |
Jobst BC, Bartolomei F, Diehl B, Frauscher B, Kahane P, Minotti L, Sharan A, Tardy N, Worrell G, Gotman J. Intracranial EEG in the 21st century. Epilepsy Curr, 2020, 20: 180- 188.
doi: 10.1177/1535759720934852
|
10 |
Richardson RM. Decision making in epilepsy surgery. Neurosurg Clin N Am, 2020, 31: 471- 479.
doi: 10.1016/j.nec.2020.03.014
|
11 |
Goodfellow M, Rummel C, Abela E, Richardson MP, Schindler K, Terry JR. Estimation of brain network ictogenicity predicts outcome from epilepsy surgery. Sci Rep, 2016, 6: 29215.
doi: 10.1038/srep29215
|
12 |
Bernabei JM, Sinha N, Arnold TC, Conrad E, Ong I, Pattnaik AR, Stein JM, Shinohara RT, Lucas TH, Bassett DS, Davis KA, Litt B. Normative intracranial EEG maps epileptogenic tissues in focal epilepsy. Brain, 2022, 145: 1949- 1961.
doi: 10.1093/brain/awab480
|
13 |
Supriya S, Siuly S, Wang H, Zhang Y. Epilepsy detection from EEG using complex network techniques: a review. IEEE Rev Biomed Eng, 2023, 16: 292- 306.
doi: 10.1109/RBME.2021.3055956
|
14 |
Wang WW, Wu X. Brain network theory, the significance and practice in clinical epileptology. Dian Xian Za Zhi, 2024, 10: 66- 72.
|
|
王薇薇, 吴逊. 脑网络理论在癫痫临床中的意义及应用. 癫痫杂志, 2024, 10: 66- 72.
|
15 |
Zhao B, Zhao X, Hu W, Zhang C, Wang X, Mo J, Shao X, Zhang K, Zhang J. Efficient volume-based localization and automatic labeling of intracranial depth electrodes. Ann Transl Med, 2023, 11: 242.
doi: 10.21037/atm-22-3712
|
16 |
Postelnicu G, Zollei L, Fischl B. Combined volumetric and surface registration. IEEE Trans Med Imaging, 2009, 28: 508- 522.
doi: 10.1109/TMI.2008.2004426
|
17 |
David O, Blauwblomme T, Job AS, Chabardès S, Hoffmann D, Minotti L, Kahane P. Imaging the seizure onset zone with stereo-electroencephalography. Brain, 2011, 134(Pt 10): 2898- 2911.
|
18 |
Seth AK, Barrett AB, Barnett L. Granger causality analysis in neuroscience and neuroimaging. J Neurosci, 2015, 35: 3293- 3297.
doi: 10.1523/JNEUROSCI.4399-14.2015
|
19 |
Gourévitch B, Bouquin-Jeannès RL, Faucon G. Linear and nonlinear causality between signals: methods, examples and neurophysiological applications. Biol Cybern, 2006, 95: 349- 369.
doi: 10.1007/s00422-006-0098-0
|
20 |
Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage, 2010, 52: 1059- 1069.
doi: 10.1016/j.neuroimage.2009.10.003
|
21 |
Jayakar P, Gotman J, Harvey AS, Palmini A, Tassi L, Schomer D, Dubeau F, Bartolomei F, Yu A, Kršek P, Velis D, Kahane P. Diagnostic utility of invasive EEG for epilepsy surgery: indications, modalities, and techniques. Epilepsia, 2016, 57: 1735- 1747.
doi: 10.1111/epi.13515
|
22 |
Vecchio F, Miraglia F, Judica E, Cotelli M, Alù F, Rossini PM. Human brain networks: a graph theoretical analysis of cortical connectivity normative database from EEG data in healthy elderly subjects. Geroscience, 2020, 42: 575- 584.
doi: 10.1007/s11357-020-00176-2
|
23 |
Ji JL, Spronk M, Kulkarni K, Repovš G, Anticevic A, Cole MW. Mapping the human brain's cortical-subcortical functional network organization. Neuroimage, 2019, 185: 35- 57.
doi: 10.1016/j.neuroimage.2018.10.006
|
24 |
Wang R, Lin J, Sun C, Hu B, Liu X, Geng D, Li Y, Yang L. Topological reorganization of brain functional networks in patients with mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes. Neuroimage Clin, 2020, 28: 102480.
doi: 10.1016/j.nicl.2020.102480
|
25 |
Fang S, Li L, Weng S, Guo Y, Zhang Z, Wang L, Fan X, Wang Y, Jiang T. Decreasing shortest path length of the sensorimotor network induces frontal glioma-related epilepsy. Front Oncol, 2022, 12: 840871.
doi: 10.3389/fonc.2022.840871
|
26 |
Guan B, Xu Y, Chen YC, Xing C, Xu L, Shang S, Xu JJ, Wu Y, Yan Q. Reorganized brain functional network topology in presbycusis. Front Aging Neurosci, 2022, 14: 905487.
doi: 10.3389/fnagi.2022.905487
|
27 |
Song K, Li J, Zhu Y, Ren F, Cao L, Huang ZG. Altered small-world functional network topology in patients with optic neuritis: a resting-state fMRI study. Dis Markers, 2021, 9948751.
|
28 |
Kramer MA, Cash SS. Epilepsy as a disorder of cortical network organization. Neuroscientist, 2012, 18: 360- 372.
doi: 10.1177/1073858411422754
|
29 |
Horstmann MT, Bialonski S, Noennig N, Mai H, Prusseit J, Wellmer J, Hinrichs H, Lehnertz K. State dependent properties of epileptic brain networks: comparative graph-theoretical analyses of simultaneously recorded EEG and MEG. Clin Neurophysiol, 2010, 121: 172- 185.
doi: 10.1016/j.clinph.2009.10.013
|
30 |
Bernhardt BC, Chen Z, He Y, Evans AC, Bernasconi N. Graph-theoretical analysis reveals disrupted small-world organization of cortical thickness correlation networks in temporal lobe epilepsy. Cereb Cortex, 2011, 21: 2147- 2157.
doi: 10.1093/cercor/bhq291
|
31 |
Bower MR, Stead M, Meyer FB, Marsh WR, Worrell GA. Spatiotemporal neuronal correlates of seizure generation in focal epilepsy. Epilepsia, 2012, 53: 807- 816.
doi: 10.1111/j.1528-1167.2012.03417.x
|
32 |
Khambhati AN, Davis KA, Lucas TH, Litt B, Bassett DS. Virtual cortical resection reveals push-pull network control preceding seizure evolution. Neuron, 2016, 91: 1170- 1182.
doi: 10.1016/j.neuron.2016.07.039
|