1 |
Chintalaphani SR , Pineda SS , Deveson IW , Kumar KR . An update on the neurological short tandem repeat expansion disorders and the emergence of long-read sequencing diagnostics. Acta Neuropathol Commun, 2021, 9: 98.
doi: 10.1186/s40478-021-01201-x
|
2 |
Shi Y , Niu Y , Zhang P , Luo H , Liu S , Zhang S , Wang J , Li Y , Liu X , Song T , Xu T , He S . Characterization of genome - wide STR variation in 6487 human genomes. Nat Commun, 2023, 14: 2092.
doi: 10.1038/s41467-023-37690-8
|
3 |
Verbiest M , Maksimov M , Jin Y , Anisimova M , Gymrek M , Bilgin Sonay T . Mutation and selection processes regulating short tandem repeats give rise to genetic and phenotypic diversity across species. J Evol Biol, 2023, 36: 321- 336.
doi: 10.1111/jeb.14106
|
4 |
Malik I , Kelley CP , Wang ET , Todd PK . Molecular mechanisms underlying nucleotide repeat expansion disorders. Nat Rev Mol Cell Biol, 2021, 22: 589- 607.
|
5 |
Depienne C , Mandel JL . 30 years of repeat expansion disorders: what have we learned and what are the remaining challenges?. Am J Hum Genet, 2021, 108: 764- 785.
doi: 10.1016/j.ajhg.2021.03.011
|
6 |
Dewan R , Chia R , Ding J , Hickman RA , Stein TD , Abramzon Y , Ahmed S , Sabir MS , Portley MK , Tucci A , Ibáñez K , Shankaracharya FNU , Keagle P , Rossi G , Caroppo P , Tagliavini F , Waldo ML , Johansson PM , Nilsson CF , Rowe JB , Benussi L , Binetti G , Ghidoni R , Jabbari E , Viollet C , Glass JD , Singleton AB , Silani V , Ross OA , Ryten M , Torkamani A , Tanaka T , Ferrucci L , Resnick SM , Pickering - Brown S , Brady CB , Kowal N , Hardy JA , Van Deerlin V , Vonsattel JP , Harms MB , Morris HR , Ferrari R , Landers JE , Chiò A , Gibbs JR , Dalgard CL , Scholz SW , Traynor BJ , American Genome Center (TAGC) , FALS Sequencing Consortium , Genomics England Research Consortium , International ALS/FTD Genomics Consortium (iAFGC) , International FTD Genetics Consortium (IFGC) , International LBD Genomics Consortium (iLBDGC) , NYGC ALS Consortium , PROSPECT Consortium . Pathogenic huntingtin repeat expansions in patients with frontotemporal dementia and amyotrophic lateral sclerosis. Neuron, 2021, 109: 448- 460.e4.
doi: 10.1016/j.neuron.2020.11.005
|
7 |
Park YW , Joers JM , Guo B , Hutter D , Bushara K , Adanyeguh IM , Eberly LE , Öz G , Lenglet C . Corrigendum: assessment of cerebral and cerebellar white matter microstructure in spinocerebellar ataxias 1, 2, 3, and 6 using diffusion MRI. Front Neurol, 2022, 13: 1038298.
doi: 10.3389/fneur.2022.1038298
|
8 |
Satoyoshi E , Kinoshita M . Oculopharyngodistal myopathy. Arch Neurol, 1977, 34: 89- 92.
doi: 10.1001/archneur.1977.00500140043007
|
9 |
Deng J , Yu J , Li P , Luan X , Cao L , Zhao J , Yu M , Zhang W , Lv H , Xie Z , Meng L , Zheng Y , Zhao Y , Gang Q , Wang Q , Liu J , Zhu M , Guo X , Su Y , Liang Y , Liang F , Hayashi T , Maeda MH , Sato T , Ura S , Oya Y , Ogasawara M , Iida A , Nishino I , Zhou C , Yan C , Yuan Y , Hong D , Wang Z . Expansion of GGC repeat in GIPC1 is associated with oculopharyngodistal myopathy. Am J Hum Genet, 2020, 106: 793- 804.
doi: 10.1016/j.ajhg.2020.04.011
|
10 |
Kumutpongpanich T , Ogasawara M , Ozaki A , Ishiura H , Tsuji S , Minami N , Hayashi S , Noguchi S , Iida A , Nishino I , Mori - Yoshimura M , Oya Y , Ono K , Shimizu T , Kawata A , Shimohama S , Toyooka K , Endo K , Toru S , Sasaki O , Isahaya K , Takahashi MP , Iwasa K , Kira JI , Yamamoto T , Kawamoto M , Hamano T , Sugie K , Eura N , Shiota T , Koide M , Sekiya K , Kishi H , Hideyama T , Kawai S , Yanagimoto S , Sato H , Arahata H , Murayama S , Saito K , Hara H , Kanda T , Yaguchi H , Imai N , Kawagashira Y , Sanada M , Obara K , Kaido M , Furuta M , Kurashige T , Hara W , Kuzume D , Yamamoto M , Tsugawa J , Kishida H , Ishizuka N , Morimoto K , Tsuji Y , Tsuneyama A , Matsuno A , Sasaki R , Tamakoshi D , Abe E , Yamada S , Uzawa A , OPDM_LRP12 Study Group . Clinicopathologic features of oculopharyngodistal myopathy with LRP12 CGG repeat expansions compared with other oculopharyngodistal myopathy subtypes. JAMA Neurol, 2021, 78: 853- 863.
doi: 10.1001/jamaneurol.2021.1509
|
11 |
Ogasawara M , Iida A , Kumutpongpanich T , Ozaki A , Oya Y , Konishi H , Nakamura A , Abe R , Takai H , Hanajima R , Doi H , Tanaka F , Nakamura H , Nonaka I , Wang Z , Hayashi S , Noguchi S , Nishino I . CGG expansion in NOTCH2NLC is associated with oculopharyngodistal myopathy with neurological manifestations. Acta Neuropathol Commun, 2020, 8: 204.
doi: 10.1186/s40478-020-01084-4
|
12 |
Yu J , Deng J , Guo X , Shan J , Luan X , Cao L , Zhao J , Yu M , Zhang W , Lv H , Xie Z , Meng L , Zheng Y , Zhao Y , Gang Q , Wang Q , Liu J , Zhu M , Zhou B , Li P , Liu Y , Wang Y , Yan C , Hong D , Yuan Y , Wang Z . The GGC repeat expansion in NOTCH2NLC is associated with oculopharyngodistal myopathy type 3. Brain, 2021, 144: 1819- 1832.
doi: 10.1093/brain/awab077
|
13 |
Yu J , Shan J , Yu M , Di L , Xie Z , Zhang W , Lv H , Meng L , Zheng Y , Zhao Y , Gang Q , Guo X , Wang Y , Xi J , Zhu W , Da Y , Hong D , Yuan Y , Yan C , Wang Z , Deng J . The CGG repeat expansion in RILPL1 is associated with oculopharyngodistal myopathy type 4. Am J Hum Genet, 2022, 109: 533- 541.
doi: 10.1016/j.ajhg.2022.01.012
|
14 |
Yu J , Deng J , Wang Z . Oculopharyngodistal myopathy. Curr Opin Neurol, 2022, 35: 637- 644.
doi: 10.1097/WCO.0000000000001089
|
15 |
Eura N, Noguchi S, Ogasawara M, Kumutpongpanich T, Hayashi S, Nishino I; OPDM/OPMD Image Study Group. Characteristics of the muscle involvement along the disease progression in a large cohort of oculopharyngodistal myopathy compared to oculopharyngeal muscular dystrophy[J]. J Neurol, 2023. [Epub ahead of print]
|
16 |
Ishiura H , Shibata S , Yoshimura J , Suzuki Y , Qu W , Doi K , Almansour MA , Kikuchi JK , Taira M , Mitsui J , Takahashi Y , Ichikawa Y , Mano T , Iwata A , Harigaya Y , Matsukawa MK , Matsukawa T , Tanaka M , Shirota Y , Ohtomo R , Kowa H , Date H , Mitsue A , Hatsuta H , Morimoto S , Murayama S , Shiio Y , Saito Y , Mitsutake A , Kawai M , Sasaki T , Sugiyama Y , Hamada M , Ohtomo G , Terao Y , Nakazato Y , Takeda A , Sakiyama Y , Umeda - Kameyama Y , Shinmi J , Ogata K , Kohno Y , Lim SY , Tan AH , Shimizu J , Goto J , Nishino I , Toda T , Morishita S , Tsuji S . Noncoding CGG repeat expansions in neuronal intranuclear inclusion disease, oculopharyngodistal myopathy and an overlapping disease. Nat Genet, 2019, 51: 1222- 1232.
doi: 10.1038/s41588-019-0458-z
|
17 |
Xi J , Wang X , Yue D , Dou T , Wu Q , Lu J , Liu Y , Yu W , Qiao K , Lin J , Luo S , Li J , Du A , Dong J , Chen Y , Luo L , Yang J , Niu Z , Liang Z , Zhao C , Lu J , Zhu W , Zhou Y . 5' UTR CGG repeat expansion in GIPC1 is associated with oculopharyngodistal myopathy. Brain, 2021, 144: 601- 614.
doi: 10.1093/brain/awaa426
|
18 |
Zeng YH , Yang K , Du GQ , Chen YK , Cao CY , Qiu YS , He J , Lv HD , Qu QQ , Chen JN , Xu GR , Chen L , Zheng FZ , Zhao M , Lin MT , Chen WJ , Hu J , Wang ZQ , Wang N . GGC repeat expansion of RILPL1 is associated with oculopharyngodistal myopathy. Ann Neurol, 2022, 92: 512- 526.
doi: 10.1002/ana.26436
|
19 |
Lindenberg R , Rubinstein LJ , Herman MM , Haydon GB . A light and electron microscopy study of an unusual widespread nuclear inclusion body disease: a possible residuum of an old herpesvirus infection. Acta Neuropathol, 1968, 10: 54- 73.
doi: 10.1007/BF00690510
|
20 |
Lu X , Hong D . Neuronal intranuclear inclusion disease: recognition and update. J Neural Transm (Vienna), 2021, 128: 295- 303.
doi: 10.1007/s00702-021-02313-3
|
21 |
Sone J , Tanaka F , Koike H , Inukai A , Katsuno M , Yoshida M , Watanabe H , Sobue G . Skin biopsy is useful for the antemortem diagnosis of neuronal intranuclear inclusion disease. Neurology, 2011, 76: 1372- 1376.
doi: 10.1212/WNL.0b013e3182166e13
|
22 |
Boivin M , Charlet - Berguerand N . Trinucleotide CGG repeat diseases: an expanding field of polyglycine proteins?. Front Genet, 2022, 13: 843014.
doi: 10.3389/fgene.2022.843014
|
23 |
Deng J , Gu M , Miao Y , Yao S , Zhu M , Fang P , Yu X , Li P , Su Y , Huang J , Zhang J , Yu J , Li F , Bai J , Sun W , Huang Y , Yuan Y , Hong D , Wang Z . Long - read sequencing identified repeat expansions in the 5'UTR of the NOTCH2NLC gene from Chinese patients with neuronal intranuclear inclusion disease. J Med Genet, 2019, 56: 758- 764.
doi: 10.1136/jmedgenet-2019-106268
|
24 |
Cao L , Yan Y , Zhao G . NOTCH2NLC - related repeat expansion disorders: an expanding group of neurodegenerative disorders. Neurol Sci, 2021, 42: 4055- 4062.
doi: 10.1007/s10072-021-05498-3
|
25 |
Liu AH , Liu Z , Chang LL , Xu Y . Research progress on the pathogenesis of Kennedy's disease. Guo Ji Shen Jing Bing Xue Shen Jing Wai Ke Xue Za Zhi, 2014, 41: 284- 288.
URL
|
|
刘爱华, 刘卓, 常蕾蕾, 徐运. 肯尼迪病发病机制的研究进展. 国际神经病学神经外科学杂志, 2014, 41: 284- 288.
URL
|
26 |
Breza M , Koutsis G . Kennedy's disease (spinal and bulbar muscular atrophy): a clinically oriented review of a rare disease. J Neurol, 2019, 266: 565- 573.
doi: 10.1007/s00415-018-8968-7
|
27 |
Kennedy WR , Alter M , Sung JH . Progressive proximal spinal and bulbar muscular atrophy of late onset: a sex - linked recessive trait. Neurology, 1968, 18: 671- 680.
doi: 10.1212/WNL.18.7.671
|
28 |
Harding AE , Thomas PK , Baraitser M , Bradbury PG , Morgan - Hughes JA , Ponsford JR . X - linked recessive bulbospinal neuronopathy: a report of ten cases. J Neurol Neurosurg Psychiatry, 1982, 45: 1012- 1019.
doi: 10.1136/jnnp.45.11.1012
|
29 |
La Spada AR , Wilson EM , Lubahn DB , Harding AE , Fischbeck KH . Androgen receptor gene mutations in X - linked spinal and bulbar muscular atrophy. Nature, 1991, 352: 77- 79.
doi: 10.1038/352077a0
|
30 |
Yamashita S . Recent progress in oculopharyngeal muscular dystrophy. J Clin Med, 2021, 10: 1375.
doi: 10.3390/jcm10071375
|
31 |
Jordan DR , Klapper SR , Farmer J . Oculopharyngeal muscular dystrophy ptosis, Mueller's muscle involvement, and a review of management over 34 years. Ophthalmic Plast Reconstr Surg, 2022, 38: 535- 542.
doi: 10.1097/IOP.0000000000002118
|
32 |
Szmulewicz DJ , Waterston JA , Halmagyi GM , Mossman S , Chancellor AM , McLean CA , Storey E . Sensory neuropathy as part of the cerebellar ataxia neuropathy vestibular areflexia syndrome. Neurology, 2011, 76: 1903- 1910.
doi: 10.1212/WNL.0b013e31821d746e
|
33 |
Rafehi H , Szmulewicz DJ , Bennett MF , Sobreira NLM , Pope K , Smith KR , Gillies G , Diakumis P , Dolzhenko E , Eberle MA , Barcina MG , Breen DP , Chancellor AM , Cremer PD , Delatycki MB , Fogel BL , Hackett A , Halmagyi GM , Kapetanovic S , Lang A , Mossman S , Mu W , Patrikios P , Perlman SL , Rosemergy I , Storey E , Watson SRD , Wilson MA , Zee DS , Valle D , Amor DJ , Bahlo M , Lockhart PJ . Bioinformatics - based identification of expanded repeats: a non - reference intronic pentamer expansion in RFC1 causes CANVAS. Am J Hum Genet, 2019, 105: 151- 165.
doi: 10.1016/j.ajhg.2019.05.016
|
34 |
Khurana V , de Gusmao CM , Glover M , Helgager J . Case 20 - 2021: a 69 - year - old man with ataxia. N Engl J Med, 2021, 385: 165- 175.
doi: 10.1056/NEJMcpc2004992
|
35 |
Tagliapietra M, Incensi A, Ferrarini M, Mesiano N, Furia A, Rizzo G, Liguori R, Cavallaro T, Monaco S, Fabrizi GM, Donadio V. Clinical and pathology characterization of small nerve fiber neuro (no) pathy in cerebellar ataxia with neuropathy and vestibular areflexia syndrome[J]. Eur J Neurol, 2023. [Epub ahead of print]
|
36 |
Chang C, Zhao Q, Liu P, Yuan Y, Liu Z, Hu Y, Li W, Hou X, Tang X, Jiao B, Guo J, Shen L, Jiang H, Tang B, Zhang X, Wang J. ALS-plus related clinical and genetic study from China[J]. Neurol Sci, 2023. [Epub ahead of print]
|
37 |
Jiang Z , Wang Z , Wei X , Yu XF . Inflammatory checkpoints in amyotrophic lateral sclerosis: from biomarkers to therapeutic targets. Front Immunol, 2022, 13: 1059994.
doi: 10.3389/fimmu.2022.1059994
|
38 |
Chakraborty A , Diwan A . Biomarkers and molecular mechanisms of amyotrophic lateral sclerosis. AIMS Neurosci, 2022, 9: 423- 443.
doi: 10.3934/Neuroscience.2022023
|
39 |
DeJesus - Hernandez M , Mackenzie IR , Boeve BF , Boxer AL , Baker M , Rutherford NJ , Nicholson AM , Finch NA , Flynn H , Adamson J , Kouri N , Wojtas A , Sengdy P , Hsiung GY , Karydas A , Seeley WW , Josephs KA , Coppola G , Geschwind DH , Wszolek ZK , Feldman H , Knopman DS , Petersen RC , Miller BL , Dickson DW , Boylan KB , Graff - Radford NR , Rademakers R . Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron, 2011, 72: 245- 256.
doi: 10.1016/j.neuron.2011.09.011
|
40 |
Morón - Oset J , Fischer LKS , Jauré N , Zhang P , Jahn AJ , Supèr T , Pahl A , Isaacs AM , Grönke S , Partridge L . Repeat length of C9orf72 - associated glycine - alanine polypeptides affects their toxicity. Acta Neuropathol Commun, 2023, 11: 140.
doi: 10.1186/s40478-023-01634-6
|
41 |
Zhou W , Xu R . Current insights in the molecular genetic pathogenesis of amyotrophic lateral sclerosis. Front Neurosci, 2023, 17: 1189470.
doi: 10.3389/fnins.2023.1189470
|
42 |
Liquori CL , Ricker K , Moseley ML , Jacobsen JF , Kress W , Naylor SL , Day JW , Ranum LP . Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science, 2001, 293: 864- 867.
doi: 10.1126/science.1062125
|
43 |
Rastelli E , Montagnese F , Massa R , Schoser B . Towards clinical outcome measures in myotonic dystrophy type 2: a systematic review. Curr Opin Neurol, 2018, 31: 599- 609.
doi: 10.1097/WCO.0000000000000591
|
44 |
Gonzalez-Perez P , D'Ambrosio ES , Picher - Martel V , Chuang K , David WS , Amato AA . Parent - of - origin effect on the age at symptom onset in myotonic dystrophy type 2. Neurol Genet, 2023, 9: e200073.
doi: 10.1212/NXG.0000000000200073
|
45 |
Hamel JI . Myotonic dystrophy. Continuum (Minneap Minn), 2022, 28: 1715- 1734.
|
46 |
Brook JD , McCurrach ME , Harley HG , Buckler AJ , Church D , Aburatani H , Hunter K , Stanton VP , Thirion JP , Hudson T , Sohn R , Zemelman B , Snell RG , Rundle SA , Crow S , Davies J , Shelbourne P , Buxton J , Jones C , Juvonen V , Johnson K , Harper PS , Shaw DJ , Housman DE . Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3' end of a transcript encoding a protein kinase family member. Cell, 1992, 68: 799- 808.
doi: 10.1016/0092-8674(92)90154-5
|
47 |
Visconti VV , Macrì E , D'Apice MR , Centofanti F , Massa R , Novelli G , Botta A . In cis effect of DMPK expanded alleles in myotonic dystrophy type 1 patients carrying variant repeats at 5' and 3' ends of the CTG array. Int J Mol Sci, 2023, 24: 10129.
doi: 10.3390/ijms241210129
|
48 |
Ozimski LL , Sabater - Arcis M , Bargiela A , Artero R . The hallmarks of myotonic dystrophy type 1 muscle dysfunction. Biol Rev Camb Philos Soc, 2021, 96: 716- 730.
doi: 10.1111/brv.12674
|
49 |
López - Martínez A , Soblechero - Martín P , de - la - Puente - Ovejero L , Nogales - Gadea G , Arechavala - Gomeza V . An overview of alternative splicing defects implicated in myotonic dystrophy type Ⅰ. Genes (Basel), 2020, 11: 1109.
doi: 10.3390/genes11091109
|
50 |
Castelli LM , Huang WP , Lin YH , Chang KY , Hautbergue GM . Mechanisms of repeat - associated non - AUG translation in neurological microsatellite expansion disorders. Biochem Soc Trans, 2021, 49: 775- 792.
doi: 10.1042/BST20200690
|
51 |
Ma Z , Zhao HH , Luo MT , Cheng X , Niu Q . Research progress on pathogenesis and drug treatment of Kennedy's disease. Zhongguo Lin Chuang Shen Jing Ke Xue, 2022, 30: 350- 356.
URL
|
|
马志, 赵慧慧, 罗茂涛, 程曦, 牛琦. 肯尼迪病的发病机制和药物治疗研究进展. 中国临床神经科学, 2022, 30: 350- 356.
URL
|
52 |
Wei CJ , Xiong H . Progress on the treatment of hereditary neuromuscular diseases. Beijing Yi Xue, 2018, 40: 390- 392.
URL
|
|
魏翠洁, 熊晖. 遗传性神经肌肉病治疗进展. 北京医学, 2018, 40: 390- 392.
URL
|
53 |
Mary P , Servais L , Vialle R . Neuromuscular diseases: diagnosis and management. Orthop Traumatol Surg Res, 2018, 104 (1S): S89- S95.
|