[1] Lai X, Zhang W, Ye M, Liu X, Luo X. Development and validation of a predictive model for the prognosis in aneurysmal subarachnoid hemorrhage[J]. J Clin Lab Anal, 2020, 34: e23542. [2] Zhu W, Ling X, Petersen JD, Liu J, Xiao A, Huang J. Clipping versus coiling for aneurysmal subarachnoid hemorrhage: a systematic review and meta - analysis of prospective studies[J]. Neurosurg Rev, 2022, 45: 1291-1302. [3] Zhou D, Wei D, Xing W, Li T, Huang Y. Effects of craniotomy clipping and interventional embolization on treatment efficacy, cognitive function and recovery of patients complicated with subarachnoid hemorrhage[J]. Am J Transl Res, 2021, 13: 5117-5126. [4] Kongsompong S, E - Kobon T, Chumnanpuen P. K - nearest neighbor and random fores - based prediction of putative tyrosinase inhibitory peptides of abalone Haliotis diversicolor[J]. Molecules, 2021, 26: 3671. [5] Zuo Y, Lin J, Zeng X, Zou Q, Liu X. CarSite -Ⅱ : an integrated classification algorithm for identifying carbonylated sites based on K - means similarity - based undersampling and synthetic minority oversampling techniques[J]. BMC Bioinformatics, 2021, 22: 216. [6] Lv CX, An SY, Qiao BJ, Wu W. Time series analysis of hemorrhagic fever with renal syndrome in mainland China by using an XGBoost forecasting model[J]. BMC Infect Dis, 2021, 21: 839. [7] Panesar SS, D'Souza RN, Yeh FC, Fernandez - Miranda JC. Machine learning versus logistic regression methods for 2 - year mortality prognostication in a small, heterogeneous glioma database[J]. World Neurosurg X, 2019, 2: 100012. [8] Martinez - Alanis M, Bojorges - Valdez E, Wessel N, Lerma C. Prediction of sudden cardiac death risk with a support vector machine based on heart rate variability and heartprint indices[J]. Sensors (Basel), 2020, 20: 5483. [9] Keikes L, Kos M, Verbeek XAAM, Van Vegchel T, Nagtegaal ID, Lahaye MJ, Méndez Romero A, De Bruijn S, Verheul HMW, Rütten H, Punt CJA, Tanis PJ, Van Oijen MGH. Conversion of a colorectal cancer guideline into clinical decision trees with assessment of validity[J]. Int J Qual Health Care, 2021, 33: 1-8. [10] Golpour P, Ghayour - Mobarhan M, Saki A, Esmaily H, Taghipour A, Tajfard M, Ghazizadeh H, Moohebati M, Ferns GA. Comparison of support vector machine, na?ve bayes and logistic regression for assessing the necessity for coronary angiography[J]. Int J Environ Res Public Health, 2020, 17: 6449. [11] Chang JB, Wang RZ, Feng M. The application of artificial intelligence in clinical diagnosis and treatment of intracranial hemorrhage[J]. Zhongguo Xian Dai Shen Jing Ji Bing Za Zhi, 2019, 19: 622-626. 常健博, 王任直, 冯铭. 人工智能在颅内出血诊断与治疗中的应用[J]. 中国现代神经疾病杂志, 2019, 19: 622-626. [12] Wu JL. Present is succeed and future is expected: artificial intelligence and cerebrovascular disease[J]. Zhongguo Xian Dai Shen Jing Ji Bing Za Zhi, 2021, 21: 1-2. 巫嘉陵. 当下有为未来可期: 人工智能与脑血管病[J]. 中国现代神经疾病杂志, 2021, 21: 1-2. [13] Chang JB, Jiang SZ, Chen XJ, Luo JX, Li WL, Zhang QH, Wei JJ, Shi L, Feng M, Wang RZ. Consistency evaluation of an automatic segmentation for quantification of intracerebral hemorrhage using convolution neural network[J]. Zhongguo Xian Dai Shen Jing Ji Bing Za Zhi, 2020, 20: 585-590. 常健博, 姜燊种, 陈显金, 骆嘉希, 李沃霖, 张庆华, 魏俊吉, 石林, 冯铭, 王任直. 基于卷积神经网络的自发性脑出血血肿分割方法的一致性评价[J]. 中国现代神经疾病杂志, 2020, 20: 585-590. [14] Tokodi M, Schwertner WR, Kovács A, T?sér Z, Staub L, Sárkány A, Lakatos BK, Behon A, Boros AM, Perge P, Kutyifa V, Széplaki G, Gellér L, Merkely B, Kosztin A. Machine learning - based mortality prediction of patients undergoing cardiac resynchronization therapy: the SEMMELWEIS - CRT score[J]. Eur Heart J, 2020, 41: 1747-1756. [15] Zhou LJ, Wen XX, Lü Q, Jiang R, Wu XW, Zhou HY, Xiang C. Using machine learning to build an early warning model for the risk of severe airflow limitation in patients with chronic obstructive pulmonary disease[J]. Zhongguo Quan Ke Yi Xue, 2022, 25: 217-226. 周丽娟, 温贤秀, 吕琴, 蒋蓉, 吴行伟, 周黄源, 向超. 使用机器学习建立慢性阻塞性肺疾病患者重度气流受限风险预警模型研究[J]. 中国全科医学, 2022, 25: 217-226. [16] Guo LM, Zhou HY, Xu JW, Wang Y, Qiu YM, Jiang JY. Risk factors related to aneurysmal rebleeding[J]. World Neurosurg, 2011, 76: 292-298. [17] Zheng K, Zhong M, Zhao B, Chen SY, Tan XX, Li ZQ, Xiong Y, Duan CZ. Poor - grade aneurysmal subarachnoid hemorrhage: risk factors affecting clinical outcomes in intracranial aneurysm patients in a multi-center study[J]. Front Neurol, 2019, 10: 123. [18] Wu Y, He Q, Wei Y, Zhu J, He Z, Zhang X, Guo Z, Xu R, Cheng C, Huang Z, Sun X. The association of neutrophil - to - lymphocyte ratio and delayed cerebral ischemia in patients with aneurysmal subarachnoid hemorrhage: possible involvement of cerebral blood perfusion[J]. Neuropsychiatr Dis Treat, 2019, 15: 1001-1007. [19] Diosdado A, Ndieugnou Djangang N, Diaferia D, Minini A, Casu GS, Peluso L, Menozzi M, Schuind S, Creteur J, Taccone FS, Gouvêa Bogossian E. Phosphatase alkaline levels are not associated with poor outcomes in subarachnoid hemorrhage patients[J]. Clin Neurol Neurosurg, 2022, 215: 107185. [20] Qiao T, Wu H, Peng W. The relationship between elevated serum uric acid and risk of stroke in adult: an updated and dose-response meta-analysis[J]. Front Neurol, 2021, 12: 674398. [21] Thornton SN. Sodium intake, cardiovascular disease, and physiology[J]. Nat Rev Cardiol, 2018, 15: 497. [22] Fisher LA, Ko N, Miss J, Tung PP, Kopelnik A, Banki NM, Gardner D, Smith WS, Lawton MT, Zaroff JG. Hypernatremia predicts adverse cardiovascular and neurological outcomes after SAH[J]. Neurocrit Care, 2006, 5: 180-185. [23] Karasuyama H, Shibata S, Yoshikawa S, Miyake K. Basophils, a neglected minority in the immune system, have come into the limelight at last[J]. Int Immunol, 2021, 33: 809-813. [24] Xie YY, Ma XS, Liu XT, Qi SH. The effect of CK -MB/CK ratio on the recurrence of acute ischemic stroke[J]. Zhongguo Ji Jiu Yi Xue, 2021, 41: 714-717. 谢宇颖, 马雪松, 刘星彤, 戚思华. 肌酸激酶指数对急性缺血性脑卒中患者复发风险的影响[J]. 中国急救医学, 2021, 41: 714-717. [25] Yao W, Ku BS, Li ZH, Li XL. Effect of L - lysine monohydrochloride on brain injury in rats[J]. Qing Dao Da Xue Yi Xue Yuan Xue Bao, 2001, 37: 282-284. 姚炜, 库宝善, 李中华, 李雪林. L-赖氨酸对大鼠脑损伤的作用[J]. 青岛大学医学院学报, 2001, 37: 282-284. [26] van den Berg SA, Dippel DWJ, Hofmeijer J, Fransen PSS, Caminada K, Siegers A, Kruyt ND, Kerkhoff H, de Leeuw FE, Nederkoorn PJ, van der Worp HB; MR ASAP Investigators. Multicentre Randomised trial of Acute Stroke treatment in the Ambulance with a nitroglycerin Patch (MR ASAP): study protocol for a randomised controlled trial[J]. Trials, 2019, 20: 383. [27] Simard JM, Aldrich EF, Schreibman D, James RF, Polifka A, Beaty N. Low -dose intravenous heparin infusion in patients with aneurysmal subarachnoid hemorrhage: a preliminary assessment[J]. J Neurosurg, 2013, 119: 1611-1619. [28] Ortega - Loubon C, Fernández - Molina M, Pa?eda - Delgado L, Jorge - Monjas P, Carrascal Y. Predictors of postoperative acute kidney injury after coronary artery bypass graft surgery[J]. Braz J Cardiovasc Surg, 2018, 33: 323-329. [29] Asgeirsson B, Gr?nde PO, Nordstr?m CH. A new therapy of post- trauma brain oedema based on haemodynamic principles for brain volume regulation[J]. Intensive Care Med, 1994, 20: 260-267. [30] Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R; SAFE Study Investigators. A comparison of albumin and saline for fluid resuscitation in the intensive care unit[J]. N Engl J Med, 2004, 350: 2247-2256. [31] Wang RZ, Chang JB, Feng M. Prospects for precious diagnosis, assessment, prediction and treatment of hemorrhagic stroke[J]. Zhongguo Xian Dai Shen Jing Ji Bing Za Zhi, 2019, 19: 618-621. 王任直, 常健博, 冯铭. 出血性卒中精准诊断、评估、预测及治疗展望[J]. 中国现代神经疾病杂志, 2019, 19: 618-621. |