[1] Wingerchuk DM, Lennon VA, Lucchinetti CF, Pittock SJ, Weinshenker BG. The spectrum of neuromyelitisoptica[J]. Lancet Neurol, 2007, 6:805-815.
[2] Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis[J]. Nat Rev Immunol, 2015, 15:545-558.
[3] Wingerchuk DM, Hogancamp WF, O'Brien PC, Weinshenker BG. The clinical course of neuromyelitisoptica (Devic's syndrome)[J]. Neurology, 1999, 53:1107-1114.
[4] Lennon VA, Wingerchuk DM, Kryzer TJ, Pittock SJ, Lucchinetti CF, Fujihara K, Nakashima I, Weinshenker BG. A serum autoantibody marker of neuromyelitisoptica:distinction from multiple sclerosis[J]. Lancet, 2004, 364:2106-2112.
[5] Lai ZW, Borsuk R, Shadakshari A, Yu J, Dawood M, Garcia R, Francis L, Tily H, Bartos A, Faraone SV, Phillips P, Perl A. Mechanistic target of rapamycin activation triggers IL-4 production and necrotic death of double-negative T cells in patients with systemic lupus erythematosus[J]. J Immunol, 2013, 191:2236-2246.
[6] Collin R, Lombard-Vadnais F, Hillhouse EE, Lebel M, Chabot-Roy G, Melichar HJ, Lesage S. MHC-independent thymic selection of CD4 and CD8 coreceptor negative αβ T cells[J]. J Immunol, 2020, 205:133-142.
[7] Chen W, Ford MS, Young KJ, Zhang L. The role and mechanisms of double negative regulatory T cells in the suppression of immune responses[J]. Cell Mol Immunol, 2004, 1:328-335.
[8] Wingerchuk DM, Banwell B, Bennett JL, Cabre P, Carroll W, Chitnis T, de Seze J, Fujihara K, Greenberg B, Jacob A, Jarius S, Lana-Peixoto M, Levy M, Simon JH, Tenembaum S, Traboulsee AL, Waters P, Wellik KE, Weinshenker BG; International Panel for NMO Diagnosis. International consensus diagnostic criteria for neuromyelitisoptica spectrum disorders[J]. Neurology, 2015, 85:177-189.
[9] Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, Correale J, Fazekas F, Filippi M, Freedman MS, Fujihara K, Galetta SL, Hartung HP, Kappos L, Lublin FD, Marrie RA, Miller AE, Miller DH, Montalban X, Mowry EM, Sorensen PS, Tintoré M, Traboulsee AL, Trojano M, Uitdehaag BM, Vukusic S, Waubant E, Weinshenker BG, Reingold SC, Cohen JA. Diagnosis of multiple sclerosis:2017 revisions of the McDonald criteria[J]. Lancet Neurol, 2018, 17:162-173.
[10] Kleiter I, Gahlen A, Borisow N, Fischer K, Wernecke KD, Wegner B, Hellwig K, Pache F, Ruprecht K, Havla J, Krumbholz M, Kümpfel T, Aktas O, Hartung HP, Ringelstein M, Geis C, Kleinschnitz C, Berthele A, Hemmer B, Angstwurm K, Stellmann JP, Schuster S, Stangel M, Lauda F, Tumani H, Mayer C, Zeltner L, Ziemann U, Linker R, Schwab M, Marziniak M, Bergh FT, van Oy UH, Neuhaus O, Winkelmann A, Marouf W, Faiss J, Wildemann B, Paul F, Jarius S, Trebst C; Neuromyelitis Optica Study Group. Neuromyelitisoptica:evaluation of 871 attacks and 1, 153 treatment courses[J]. Ann Neurol, 2016, 79:206-216.
[11] Kurtzke JF. Rating neurologic impairment in multiple sclerosis:an expanded disability status scale (EDSS)[J]. Neurology, 1983, 33:1444-1452.
[12] Lindsey JW, Meulmester KM, Brod SA, Nelson F, Wolinsky JS. Variable results after rituximab in neuromyelitisoptica[J]. J Neurol Sci, 2012, 317:103-105.
[13] Liapis K, Tsagarakis NJ, Panitsas F, Taparkou A, Liapis I, Roubakis C, Tsokanas D, Vasileiou P, Grigoriou E, Kakiopoulos G, Psarra K, Farmaki E, Paterakis G. Causes of double-negative T-cell lymphocytosis in children and adults[J]. J Clin Pathol, 2020, 73:431-438.
[14] Brandt D, Hedrich CM. TCRαβ(+)CD3(+)CD4(-)CD8(-) (double negative) T cells in autoimmunity[J]. Autoimmun Rev, 2018, 17:422-430.
[15] Hedrich CM, Rauen T, Crispin JC, Koga T, Ioannidis C, Zajdel M, Kyttaris VC, Tsokos GC. cAMP-responsive element modulator α (CREM α) trans-represses the transmembrane glycoprotein CD8 and contributes to the generation of CD3+ CD4-CD8-T cells in health and disease[J]. J Biol Chem, 2013, 288:31880-31887.
[16] Priatel JJ, Utting O, Teh HS. TCR/self-antigen interactions drive double-negative T cell peripheral expansion and differentiation into suppressor cells[J]. J Immunol, 2001, 167:6188-6194.
[17] Bleesing JJ, Brown MR, Dale JK, Straus SE, Lenardo MJ, Puck JM, Atkinson TP, Fleisher TA. TCR-alpha/beta(+) CD4(-)CD8(-) T cells in humans with the autoimmune lymphoproliferative syndrome express a novel CD45 isoform that is analogous to murine B220 and represents a marker of altered O-glycan biosynthesis[J]. Clin Immunol, 2001, 100:314-324.
[18] Haug T, Aigner M, Peuser MM, Strobl CD, Hildner K, Mougiakakos D, Bruns H, Mackensen A, Völkl S. Human double-negative regulatory T-cells induce a metabolic and functional switch in effector T-cells by suppressing mTOR activity[J]. Front Immunol, 2019, 10:883.
[19] D'Acquisto F, Crompton T. CD3+ CD4-CD8-(double negative) T cells:saviours or villains of the immune response[J]. Biochem Pharmacol, 2011, 82:333-340.
[20] Reinhardt C, Melms A. Normalization of elevated CD4-/CD8-(double-negative) T cells after thymectomy parallels clinical remission in myasthenia gravis associated with thymic hyperplasia but not thymoma[J]. Ann Neurol, 2000, 48:603-608.
[21] Crispín JC, Tsokos GC. IL-17 in systemic lupus erythematosus[J]. J Biomed Biotechnol, 2010:ID943254.
[22] Li H, Adamopoulos IE, Moulton VR, Stillman IE, Herbert Z, Moon JJ, Sharabi A, Krishfield S, Tsokos MG, Tsokos GC. Systemic lupus erythematosus favors the generation of IL-17 producing double negative T cells[J]. Nat Commun, 2020, 11:2859.
[23] Matsumoto Y, Abe S, Tsuchida M, Hirahara H, Abo T, Shin T, Tanuma N, Kojima T, Ishihara Y. Characterization of CD4-CD8-T cell receptor alpha beta + T cells appearing in the subarachnoid space of rats with autoimmune encephalomyelitis[J]. Eur J Immunol, 1996, 26:1328-1334.
[24] Meng H, Zhao H, Cao X, Hao J, Zhang H, Liu Y, Zhu MS, Fan L, Weng L, Qian L, Wang X, Xu Y. Double-negative T cells remarkably promote neuroinflammation after ischemic stroke[J]. Proc Natl Acad Sci USA, 2019, 116:5558-5563.
[25] Gagliani N, Vesely MC, Iseppon A, Brockmann L, Xu H, Palm NW, de Zoete MR, Licona-Limón P, Paiva RS, Ching T, Weaver C, Zi X, Pan X, Fan R, Garmire LX, Cotton MJ, Drier Y, Bernstein B, Geginat J, Stockinger B, Esplugues E, Huber S, Flavell RA. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation[J]. Nature, 2015, 523:221-225.
[26] Jin WN, Gonzales R, Feng Y, Wood K, Chai Z, Dong JF, Cava AL, Shi FD, Liu Q. Brain ischemia induces diversified neuroantigen-specific T-cell responses that exacerbate brain injury[J]. Stroke, 2018, 49:1471-1478. |