1 |
Park JH , Lee JY , Lee BH , Jeon HJ , Park SW . Free-hand cervical pedicle screw placement by using para-articular minilaminotomy: its feasibility and novice neurosurgeons' experience. Global Spine J, 2021, 11: 662- 668.
doi: 10.1177/2192568220919089
|
2 |
Tigchelaar SS , Medress ZA , Quon J , Dang P , Barbery D , Bobrow A , Kin C , Louis R , Desai A . Augmented reality neuronavigation for en bloc resection of spinal column lesions. World Neurosurg, 2022, 167: 102- 110.
doi: 10.1016/j.wneu.2022.08.143
|
3 |
Bydon M , Xu R , Amin AG , Macki M , Kaloostian P , Sciubba DM , Wolinsky JP , Bydon A , Gokaslan ZL , Witham TF . Safety and efficacy of pedicle screw placement using intraoperative computed tomography: consecutive series of 1148 pedicle screws. J Neurosurg Spine, 2014, 21: 320- 328.
doi: 10.3171/2014.5.SPINE13567
|
4 |
Massaad E , Shankar GM , Shin JH . Novel applications of spinal navigation in deformity and oncology surgery: beyond screw placement. Oper Neurosurg (Hagerstown), 2021, 21 (Supp 1): S23- S38.
|
5 |
Li HM , Zhang RJ , Shen CL . Accuracy of pedicle screw placement and clinical outcomes of robot-assisted technique versus conventional freehand technique in spine surgery from nine randomized controlled trials: a meta-analysis. Spine (Phila Pa 1976), 2020, 45: E111- E119.
doi: 10.1097/BRS.0000000000003193
|
6 |
Fu W , Tong J , Liu G , Zheng Y , Wang S , Abdelrahim MEA , Gong S . Robot-assisted technique vs conventional freehand technique in spine surgery: a meta-analysis. Int J Clin Pract, 2021, 75: e13964.
|
7 |
Léger É , Drouin S , Collins DL , Popa T , Kersten-Oertel M . Quantifying attention shifts in augmented reality image-guided neurosurgery. Healthc Technol Lett, 2017, 4: 188- 192.
doi: 10.1049/htl.2017.0062
|
8 |
Gabbard JL , Mehra DG , Swan JE . Effects of AR display context switching and focal distance switching on human performance. IEEE Trans Vis Comput Graph, 2019, 25: 2228- 2241.
doi: 10.1109/TVCG.2018.2832633
|
9 |
Herrlich M , Tavakol P , Black D , Wenig D , Rieder C , Malaka R , Kikinis R . Instrument-mounted displays for reducing cognitive load during surgical navigation. Int J Comput Assist Radiol Surg, 2017, 12: 1599- 1605.
doi: 10.1007/s11548-017-1540-6
|
10 |
Mao JZ , Agyei JO , Khan A , Hess RM , Jowdy PK , Mullin JP , Pollina J . Technologic evolution of navigation and robotics in spine surgery: a historical perspective. World Neurosurg, 2021, 145: 159- 167.
doi: 10.1016/j.wneu.2020.08.224
|
11 |
Hussain I , Cosar M , Kirnaz S , Schmidt FA , Wipplinger C , Wong T , Härtl R . Evolving navigation, robotics, and augmented reality in minimally invasive spine surgery. Global Spine J, 2020, 10 (2 Suppl): 22S- 33S.
|
12 |
Scarone P , Chatterjea A , Jenniskens I , Klüter T , Weuster M , Lippross S , Presilla S , Distefano D , Chianca V , Sedaghat S , Nelson M , Lampe F , Seekamp A . Percutaneous thoraco-lumbar- sacral pedicle screw placement accuracy results from a multi - center, prospective clinical study using a skin marker-based optical navigation system. Eur Spine J, 2022, 31: 3098- 3108.
doi: 10.1007/s00586-022-07387-5
|
13 |
Schwendner M , Meyer B , Krieg SM . Robot-assisted pedicle screw placement. Oper Orthop Traumatol, 2023, 35: 37- 42.
doi: 10.1007/s00064-022-00792-5
|
14 |
Cabrera JP , Camino-Willhuber G , Muthu S , Guiroy A , Valacco M , Pola E . Percutaneous versus open pedicle screw fixation for pyogenic spondylodiscitis of the thoracic and lumbar spine: systematic review and meta-analysis. Clin Spine Surg, 2023, 36: 24- 33.
doi: 10.1097/BSD.0000000000001325
|
15 |
Luo M , Yang Y , Liu Z , Tan J , Luo J , Long Z , Chen M , Liang C , Xiao Z . Percutaneous versus traditional open approaches for the treatment of thoracolumbar fractures in patients without neurologic deficits: a meta-analysis of 35 cohort studies. Neurosurg Rev, 2024, 47: 62.
doi: 10.1007/s10143-023-02259-y
|
16 |
Li C , Li H , Su J , Wang Z , Li D , Tian Y , Yuan S , Wang L , Liu X . Comparison of the accuracy of pedicle screw placement using a fluoroscopy-assisted free-hand technique with robotic - assisted navigation using an O-arm or 3D C-arm in scoliosis surgery. Global Spine J, 2024, 14: 1337- 1346.
doi: 10.1177/21925682221143076
|
17 |
Shin MH , Ryu KS , Park CK . Accuracy and safety in pedicle screw placement in the thoracic and lumbar spines: comparison study between conventional C-arm fluoroscopy and navigation coupled with O-arm® guided methods. J Korean Neurosurg Soc, 2012, 52: 204- 209.
doi: 10.3340/jkns.2012.52.3.204
|
18 |
Ghaednia H , Fourman MS , Lans A , Detels K , Dijkstra H , Lloyd S , Sweeney A , Oosterhoff JHF , Schwab JH . Augmented and virtual reality in spine surgery, current applications and future potentials. Spine J, 2021, 21: 1617- 1625.
doi: 10.1016/j.spinee.2021.03.018
|
19 |
Abe Y , Sato S , Kato K , Hyakumachi T , Yanagibashi Y , Ito M , Abumi K . A novel 3D guidance system using augmented reality for percutaneous vertebroplasty: technical note. J Neurosurg Spine, 2013, 19: 492- 501.
doi: 10.3171/2013.7.SPINE12917
|
20 |
Liebmann F , Roner S , von Atzigen M , Scaramuzza D , Sutter R , Snedeker J , Farshad M , Fürnstahl P . Pedicle screw navigation using surface digitization on the Microsoft HoloLens. Int J Comput Assist Radiol Surg, 2019, 14: 1157- 1165.
doi: 10.1007/s11548-019-01973-7
|
21 |
Molina CA , Theodore N , Ahmed AK , Westbroek EM , Mirovsky Y , Harel R , Orru' E , Khan M , Witham T , Sciubba DM . Augmented reality- assisted pedicle screw insertion: a cadaveric proof-of-concept study. J Neurosurg Spine, 2019, 31: 139- 146.
doi: 10.3171/2018.12.SPINE181142
|
22 |
Urakov TM , Wang MY , Levi AD . Workflow caveats in augmented reality-assisted pedicle instrumentation: cadaver lab. World Neurosurg, 2019, 126: e1449- e1455.
doi: 10.1016/j.wneu.2019.03.118
|
23 |
Wei P , Yao Q , Xu Y , Zhang H , Gu Ya , Wang L . Percutaneous kyphoplasty assisted with/without mixed reality technology in treatment of OVCF with IVC: a prospective study. J Orthop Surg Res, 2019, 14: 255.
doi: 10.1186/s13018-019-1303-x
|
24 |
Dennler C , Jaberg L , Spirig J , Agten C , Götschi T , Fürnstahl P , Farshad M . Augmented reality-based navigation increases precision of pedicle screw insertion. J Orthop Surg Res, 2020, 15: 174.
doi: 10.1186/s13018-020-01690-x
|
25 |
Molina CA , Phillips FM , Colman MW , Ray WZ , Khan M , Orru' E , Poelstra K , Khoo L . A cadaveric precision and accuracy analysis of augmented reality-mediated percutaneous pedicle implant insertion. J Neurosurg Spine, 2020, 34: 316- 324.
|
26 |
Buch VP , Mensah-Brown KG , Germi JW , Park BJ , Madsen PJ , Borja AJ , Haldar D , Basenfelder P , Yoon JW , Schuster JM , Chen HI . Development of an intraoperative pipeline for holographic mixed reality visualization during spinal fusion surgery. Surg Innov, 2021, 28: 427- 437.
doi: 10.1177/1553350620984339
|
27 |
Yanni DS , Ozgur BM , Louis RG , Shekhtman Y , Iyer RR , Boddapati V , Iyer A , Patel PD , Jani R , Cummock M , Herur - Raman A , Dang P , Goldstein IM , Brant-Zawadzki M , Steineke T , Lenke LG . Real-time navigation guidance with intraoperative CT imaging for pedicle screw placement using an augmented reality head-mounted display: a proof-of-concept study. Neurosurg Focus, 2021, 51: E11.
|