[1] Ball T, González-Martínez J, Zemmar A, Sweid A, Chandra S, VanSickle D, Neimat JS, Jabbour P, Wu C. Robotic applications in cranial neurosurgery:current and future[J]. Oper Neurosurg (Hagerstown), 2021, 21:371-379. [2] Becker F, Morgül H, Katou S, Juratli M, Hölzen JP, Pascher A, Struecker B. Robotic liver surgery:current standards and future perspectives[J]. Z Gastroenterol, 2021, 59:56-62. [3] Wong SW, Ang ZH, Yang PF, Crowe P. Robotic colorectal surgery and ergonomics[J]. J Robot Surg, 2022, 16:241-246. [4] Davis M, Egan J, Marhamati S, Galfano A, Kowalczyk KJ. Retzius-sparing robot-assisted robotic prostatectomy:past, present, and future[J]. Urol Clin North Am, 2021, 48:11-23. [5] Fernandez-Pello S, Verma N, Kuusk T, Berezowska A, Mumtaz F, Patki P, Tran M, Barod R, Bex A. Perioperative impact of body mass index on upper urinary tract and renal robot-assisted surgery:a single high-volume centre experience[J]. J Robot Surg, 2022, 16:611-619. [6] Bankar GR, Keoliya A. Robot-assisted surgery in gynecology[J]. Cureus, 2022, 14:e29190. [7] Han ES, Advincula AP. Robotic surgery:advancements and inflection points in the field of gynecology[J]. Obstet Gynecol Clin North Am, 2021, 48:759-776. [8] Lazar JF, Hwalek AE. A review of robotic thoracic surgery adoption and future innovations[J]. Thorac Surg Clin, 2023, 33:1-10. [9] Jiao J, Guo J, Zhao J, Li X, Du M. A universal incision for robot-assisted thoracic surgery[J]. Front Surg, 2022, 9:965453. [10] Stumpo V, Staartjes VE, Klukowska AM, Golahmadi AK, Gadjradj PS, Schröder ML, Veeravagu A, Stienen MN, Serra C, Regli L. Global adoption of robotic technology into neurosurgical practice and research[J]. Neurosurg Rev, 2021, 44:2675-2687. [11] Marcus HJ, Hughes-Hallett A, Cundy TP, Yang GZ, Darzi A, Nandi D. da Vinci robot-assisted keyhole neurosurgery:a cadaver study on feasibility and safety[J]. Neurosurg Rev, 2015, 38:367-371. [12] Bagga V, Bhattacharyya D. Robotics in neurosurgeryρ[J]. Ann R Coll Surg Engl, 2018, 100(6_sup):19-22. [13] Bravo J, Wali AR, Hirshman BR, Gopesh T, Steinberg JA, Yan B, Pannell JS, Norbash A, Friend J, Khalessi AA, Santiago-Dieppa D. Robotics and artificial intelligence in endovascular neurosurgery[J]. Cureus, 2022, 14:e23662. [14] Elsabeh R, Singh S, Shasho J, Saltzman Y, Abrahams JM. Cranial neurosurgical robotics[J]. Br J Neurosurg, 2021, 35:532-540. [15] Alan N, Patel A, Abou-Al-Shaar H, Agarwal N, Zenonos GA, Jankowitz BT, Gross BA. Intraparenchymal hematoma and intraventricular catheter placement using robotic stereotactic assistance (ROSA):a single center preliminary experience[J]. J Clin Neurosci, 2021, 91:391-395. [16] Wu L, Sun YW, Lu B, Zhou ZJ, Li FB, Li L. Clinical application of Rosa robot-assisted stereotactic intracranial biopsy[J]. Zhongguo Lin Chuang Shen Jing Wai Ke Za Zhi, 2021, 26:584-586. 邬立, 孙允伟, 陆斌, 周子健, 李方宝, 李洛. Rosa机器人辅助立体定向颅内活检术的临床应用[J]. 中国临床神经外科杂志, 2021, 26:584-586. [17] Doddamani RS, Meena R, Sawarkar D, Singh P, Agrawal D, Singh M, Chandra PS. Robot-guided ventriculoperitoneal shunt in slit-like ventricles[J]. Neurol India, 2021, 69:446-450. [18] Peciu-Florianu I, Legrand V, Monfilliette-Djelad A, Maurage CA, Vannod-Michel Q, Blond S, Touzet G, Reyns N. Frameless robot-assisted stereotactic biopsies for lesions of the brainstem:a series of 103 consecutive biopsies[J]. J Neurooncol, 2022, 157:109-119. [19] Wu S, Wang J, Gao P, Liu W, Hu F, Jiang W, Lei T, Shu K. A comparison of the efficacy, safety, and duration of frame-based and Remebot robot-assisted frameless stereotactic biopsy[J]. Br J Neurosurg, 2021, 35:319-323. [20] Azizian M, Liu M, Khalaji I, Sorger J, Oh D, Daimios S. The da Vinci Surgical System[M]//Abedin-Nasab MH. Handbook of robotic and image-guided surgery. Amsterdam:Elsevier, 2020:3-28. [21] Marinho MM, Harada K, Morita A, Mitsuishi M. SmartArm:integration and validation of a versatile surgical robotic system for constrained workspaces[J]. Int J Med Robot, 2020, 16:e2053. [22] Pangal DJ, Cote DJ, Ruzevick J, Yarovinsky B, Kugener G, Wrobel B, Ference EH, Swanson M, Hung AJ, Donoho DA, Giannotta S, Zada G. Robotic and robot-assisted skull base neurosurgery:systematic review of current applications and future directions[J]. Neurosurg Focus, 2022, 52:E15. [23] Sutherland GR, Lama S, Gan LS, Wolfsberger S, Zareinia K. Merging machines with microsurgery:clinical experience with neuroArm[J]. J Neurosurg, 2013, 118:521-529. [24] Bader KB, Hendley SA, Bollen V. Assessment of Collaborative Robot (Cobot)-assisted histotripsy for venous clot ablation[J]. IEEE Trans Biomed Eng, 2021, 68:1220-1228. [25] Papanagiotou D, Senteri G, Manitsaris S. Egocentric gesture recognition using 3D convolutional neural networks for the spatiotemporal adaptation of collaborative robots[J]. Front Neurorobot, 2021, 15:703545. [26] Ding D, Styler B, Chung CS, Houriet A. Development of a vision-guided shared-control system for assistive robotic manipulators[J]. Sensors (Basel), 2022, 22:4351. [27] Zhang W, Li H, Cui L, Li H, Zhang X, Fang S, Zhang Q. Research progress and development trend of surgical robot and surgical instrument arm[J]. Int J Med Robot, 2021, 17:e2309. [28] Taylor R, Jensen P, Whitcomb L, Barnes A, Kumar R, Stoianovici D, Gupta P, Wang Z, Dejuan E, Kavoussi L. A steady-hand robotic system for microsurgical augmentation[J]. Int J Robot Res, 1999, 18:1201-1210. [29] Liu J, Yao Y. The evolvement of skull base surgery[J]. Zhongguo Xian Dai Shen Jing Ji Bing Za Zhi, 2021, 21:621-626. 刘杰, 姚勇. 神经外科颅底手术进展[J]. 中国现代神经疾病杂志, 2021, 21:621-626. [30] Piloni M, Bailo M, Gagliardi F, Mortini P. Resection of intracranial tumors with a robotic-assisted digital microscope:a preliminary experience with robotic scope[J]. World Neurosurg, 2021, 152:e205-211. [31] Ahmed SI, Javed G, Mubeen B, Bareeqa SB, Rasheed H, Rehman A, Phulpoto MM, Samar SS, Aziz K. Robotics in neurosurgery:a literature review[J]. J Pak Med Assoc, 2018, 68:258-263. [32] Zimmermann M, Krishnan R, Raabe A, Seifert V. Robot-assisted navigated neuroendoscopy[J]. Neurosurgery, 2002, 51:1446-1451. [33] Vougioukas VI, Hubbe U, Hochmuth A, Gellrich NC, van Velthoven V. Perspectives and limitations of image-guided neurosurgery in pediatric patients[J]. Childs Nerv Syst, 2003, 19:783-791. [34] Nimsky CH, Rachinger J, Iro H, Fahlbusch R. Adaptation of a hexapod-based robotic system for extended endoscope-assisted transsphenoidal skull base surgery[J]. Minim Invasive Neurosurg, 2004, 47:41-46. [35] Rachinger J, Bumm K, Wurm J, Bohr C, Nissen U, Dannenmann T, Buchfelder M, Iro H, Nimsky C. A new mechatronic assistance system for the neurosurgical operating theatre:implementation, assessment of accuracy and application concepts[J]. Stereotact Funct Neurosurg, 2007, 85:249-255. [36] Gonen L, Chakravarthi SS, Monroy-Sosa A, Celix JM, Kojis N, Singh M, Jennings J, Fukui MB, Rovin RA, Kassam AB. Initial experience with a robotically operated video optical telescopic-microscope in cranial neurosurgery:feasibility, safety, and clinical applications[J]. Neurosurg Focus, 2017, 42:E9. [37] Goto T, Hongo K, Yako T, Hara Y, Okamoto J, Toyoda K, Fujie MG, Iseki H. The concept and feasibility of EXPERT:intelligent armrest using robotics technology[J]. Neurosurgery, 2013, 72 Suppl 1:39-42. [38] Ogiwara T, Goto T, Nagm A, Hongo K. Endoscopic endonasal transsphenoidal surgery using the iArmS operation support robot:initial experience in 43 patients[J]. Neurosurg Focus, 2017, 42:E10. [39] Goto T, Hongo K, Ogiwara T, Nagm A, Okamoto J, Muragaki Y, Lawton M, McDermott M, Berger M. Intelligent surgeon's arm supporting system iArmS in microscopic neurosurgery utilizing robotic technology[J]. World Neurosurg, 2018, 119:e661-665. [40] Okuda H, Okamoto J, Takumi Y, Kakehata S, Muragaki Y. The iArmS robotic armrest prolongs endoscope lens-wiping intervals in endoscopic sinus surgery[J]. Surg Innov, 2020, 27:515-522. [41] Kane G, Eggers G, Boesecke R, Raczkowsky J, Wörn H, Marmulla R, Mühling J. System design of a hand-held mobile robot for craniotomy[J]. Med Image Comput Comput Assist Interv, 2009, 12(Pt 1):402-409. [42] Xiong R, Zhang S, Gan Z, Qi Z, Liu M, Xu X, Wang Q, Zhang J, Li F, Chen X. A novel 3D-vision-based collaborative robot as a scope holding system for port surgery:a technical feasibility study[J]. Neurosurg Focus, 2022, 52:E13. |