[1] Samuel AL. Some studies in machine learning using the game of checkers[J]. IBM J Res Dev, 2000, 44:206-226. [2] Cruz JA, Wishart DS. Applications of machine learning in cancer prediction and prognosis[J]. Cancer Inform, 2007, 2:59-77. [3] GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990-2019:a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet Neurol, 2021, 20:795-820. [4] Lee H, Lee EJ, Ham S, Lee HB, Lee JS, Kwon SU, Kim JS, Kim N, Kang DW. Machine learning approach to identify stroke within 4.5 hours[J]. Stroke, 2020, 51:860-866. [5] Mainali S, Darsie ME, Smetana KS. Machine learning in action:stroke diagnosis and outcome prediction[J]. Front Neurol, 2021, 12:734345. [6] Arbabshirani MR, Fornwalt BK, Mongelluzzo GJ, Suever JD, Geise BD, Patel AA, Moore GJ. Advanced machine learning in action:identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration[J]. NPJ Digit Med, 2018, 1:9. [7] Ho KC, Speier W, Zhang H, Scalzo F, El-Saden S, Arnold CW. A machine learning approach for classifying ischemic stroke onset time from imaging[J]. IEEE Trans Med Imaging, 2019, 38:1666-1676. [8] Park E, Lee K, Han T, Nam HS. Automatic grading of stroke symptoms for rapid assessment using optimized machine learning and 4-limb kinematics:clinical validation study[J]. J Med Internet Res, 2020, 22:e20641. [9] Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets[J]. Neural Comput, 2006, 18:1527-1554. [10] Saba L, Biswas M, Kuppili V, Cuadrado Godia E, Suri HS, Edla DR, Omerzu T, Laird JR, Khanna NN, Mavrogeni S, Protogerou A, Sfikakis PP, Viswanathan V, Kitas GD, Nicolaides A, Gupta A, Suri JS. The present and future of deep learning in radiology[J]. Eur J Radiol, 2019, 114:14-24. [11] Ramos-Murguialday A, Broetz D, Rea M, Läer L, Yilmaz O, Brasil FL, Liberati G, Curado MR, Garcia-Cossio E, Vyziotis A, Cho W, Agostini M, Soares E, Soekadar S, Caria A, Cohen LG, Birbaumer N. Brain-machine interface in chronic stroke rehabilitation:a controlled study[J]. Ann Neurol, 2013, 74:100-108. [12] Murray NM, Unberath M, Hager GD, Hui FK. Artificial intelligence to diagnose ischemic stroke and identify large vessel occlusions:a systematic review[J]. J Neurointerv Surg, 2020, 12:156-164. [13] Tang Z, Xu Y, Jin L, Aibaidula A, Lu J, Jiao Z, Wu J, Zhang H, Shen D. Deep learning of imaging phenotype and genotype for predicting overall survival time of glioblastoma patients[J]. IEEE Trans Med Imaging, 2020, 39:2100-2109. [14] Li L, Wei M, Liu B, Atchaneeyasakul K, Zhou F, Pan Z, Kumar SA, Zhang JY, Pu Y, Liebeskind DS, Scalzo F. Deep learning for hemorrhagic lesion detection and segmentation on brain CT images[J]. IEEE J Biomed Health Inform, 2021, 25:1646-1659. [15] Ni Y, Alwell K, Moomaw CJ, Woo D, Adeoye O, Flaherty ML, Ferioli S, Mackey J, De Los Rios La Rosa F, Martini S, Khatri P, Kleindorfer D, Kissel BM. Towards phenotyping stroke:leveraging data from a large-scale epidemiological study to detect stroke diagnosis[J]. PLoS One, 2018, 13:e0192586. [16] Maier O, Schröder C, Forkert ND, Martinetz T, Handels H. Correction:classifiers for ischemic stroke lesion segmentation:a comparison study[J]. PLoS One, 2016, 11:e0149828. [17] Zhu H, Jiang L, Zhang H, Luo L, Chen Y, Chen Y. An automatic machine learning approach for ischemic stroke onset time identification based on DWI and FLAIR imaging[J]. Neuroimage Clin, 2021, 31:102744. [18] Arac A. Machine learning for 3D kinematic analysis of movements in neurorehabilitation[J]. Curr Neurol Neurosci Rep, 2020, 20:29. [19] Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, Wang Y, Dong Q, Shen H, Wang Y. Artificial intelligence in healthcare:past, present and future[J]. Stroke Vasc Neurol, 2017, 2:230-243. [20] Yahiya S, Yousif A, Bakri M. Classification of ischemic stroke using machine learning algorithms[J]. Int J Comput App, 2016, 149:26-31. [21] Mohr JP, Caplan LR, Melski JW, Goldstein RJ, Duncan GW, Kistler JP, Pessin MS, Bleich HL. The harvard cooperative stroke registry:a prospective registry[J]. Neurology, 1978, 28:754-762. [22] Sacco RL, Ellenberg JH, Mohr JP, Tatemichi TK, Hier DB, Price TR, Wolf PA. Infarcts of undetermined cause:the NINCDS Stroke Data Bank[J]. Ann Neurol, 1989, 25:382-390. [23] Washington HH, Glaser KR, Ifejika NL. CE:acute ischemic stroke[J]. Am J Nurs, 2021, 121:26-33. [24] Inamdar MA, Raghavendra U, Gudigar A, Chakole Y, Hegde A, Menon GR, Barua P, Palmer EE, Cheong KH, Chan WY, Ciaccio EJ, Acharya UR. A review on computer aided diagnosis of acute brain stroke[J]. Sensors (Basel), 2021, 21:8507. [25] Ho KC, Speier W, El-Saden S, Arnold CW. Classifying acute ischemic stroke onset time using deep imaging features[J]. AMIA Annu Symp Proc, 2018, 2017:892-901. [26] Yu Y, Guo D, Lou M, Liebeskind D, Scalzo F. Prediction of hemorrhagic transformation severity in acute stroke from source perfusion MRI[J]. IEEE Trans Biomed Eng, 2018, 65:2058-2065. [27] Fatahzadeh M, Glick M. Stroke:epidemiology, classification, risk factors, complications, diagnosis, prevention, and medical and dental management[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2006, 102:180-191. [28] Garg R, Oh E, Naidech A, Kording K, Prabhakaran S. Automating ischemic stroke subtype classification using machine learning and natural language processing[J]. J Stroke Cerebrovasc Dis, 2019, 28:2045-2051. [29] Govindarajan P, Soundarapandian RK, Gandomi AH, Patan R, Jayaraman P, Manikandan R. Classification of stroke disease using machine learning algorithms[J]. Neural Comput App, 2020, 32:817-828. [30] Asadi H, Dowling R, Yan B, Mitchell P. Machine learning for outcome prediction of acute ischemic stroke post intra-arterial therapy[J]. PLoS One, 2014, 9:e88225. [31] Alaka SA, Menon BK, Brobbey A, Williamson T, Goyal M, Demchuk AM, Hill MD, Sajobi TT. Functional outcome prediction in ischemic stroke:a comparison of machine learning algorithms and regression models[J]. Front Neurol, 2020, 11:889. [32] Matsumoto K, Nohara Y, Soejima H, Yonehara T, Nakashima N, Kamouchi M. Stroke prognostic scores and data-driven prediction of clinical outcomes after acute ischemic stroke[J]. Stroke, 2020, 51:1477-1483. [33] Lin CH, Hsu KC, Johnson KR, Fann YC, Tsai CH, Sun Y, Lien LM, Chang WL, Chen PL, Lin CL, Hsu CY; Taiwan Stroke Registry Investigators. Evaluation of machine learning methods to stroke outcome prediction using a nationwide disease registry[J]. Comput Methods Programs Biomed, 2020, 190:105381. [34] Sirsat MS, Fermé E, Câmara J. Machine learning for brain stroke:a review[J]. J Stroke Cerebrovasc Dis, 2020, 29:105162. [35] Campbell BCV, De Silva DA, Macleod MR, Coutts SB, Schwamm LH, Davis SM, Donnan GA. Ischaemic stroke[J]. Nat Rev Dis Primers, 2019, 5:70. [36] Campbell BCV, Khatri P. Stroke[J]. Lancet, 2020, 396:129-142. [37] Pelcher I, Puzo C, Tripodis Y, Aparicio HJ, Steinberg EG, Phelps A, Martin B, Palmisano JN, Vassey E, Lindbergh C, McKee AC, Stein TD, Killiany RJ, Au R, Kowall NW, Stern RA, Mez J, Alosco ML. Revised framingham stroke risk profile:association with cognitive status and MRI-derived volumetric measures[J]. J Alzheimers Dis, 2020, 78:1393-1408. [38] Yang Y, Zheng J, Du Z, Li Y, Cai Y. Accurate prediction of stroke for hypertensive patients based on medical big data and machine learning algorithms:retrospective study[J]. JMIR Med Inform, 2021, 9:e30277. [39] Scrutinio D, Ricciardi C, Donisi L, Losavio E, Battista P, Guida P, Cesarelli M, Pagano G, D'Addio G. Machine learning to predict mortality after rehabilitation among patients with severe stroke[J]. Sci Rep, 2020, 10:20127. [40] Bacchi S, Oakden-Rayner L, Menon DK, Jannes J, Kleinig T, Koblar S. Stroke prognostication for discharge planning with machine learning:a derivation study[J]. J Clin Neurosci, 2020, 79:100-103. [41] Sakai K, Yamada K. Machine learning studies on major brain diseases:5-year trends of 2014-2018[J]. Jpn J Radiol, 2019, 37:34-72. [42] Vayena E, Blasimme A, Cohen IG. Machine learning in medicine:addressing ethical challenges[J]. PLoS Med, 2018, 15:e1002689. [43] McGraw G, Bonett R, Shepardson V, Figueroa H. The top 10 risks of machine learning security[J]. Comput, 2020, 53:57-61. |