[1] May A, Burstein R. Hypothalamic regulation of headache and migraine[J]. Cephalalgia, 2019, 39:1710-1719. [2] Meylakh N, Marciszewski KK, Di Pietro F, Macefield VG, Macey PM, Henderson LA. Altered regional cerebral blood flow and hypothalamic connectivity immediately prior to a migraine headache[J]. Cephalalgia, 2020, 40:448-460. [3] Liu QQ, Yao XX, Gao SH, Li R, Li BJ, Yang W, Cui RJ. Role of 5-HT receptors in neuropathic pain:potential therapeutic implications[J]. Pharmacol Res, 2020, 159:104949. [4] Haanes KA, Edvinsson L. Pathophysiological mechanisms in migraine and the identification of new therapeutic targets[J]. CNS Drugs, 2019, 33:525-537. [5] Salehi S, Kashfi K, Manaheji H, Haghparast A. Chemical stimulation of the lateral hypothalamus induces antiallodynic and anti-thermal hyperalgesic effects in animal model of neuropathic pain:involvement of orexin receptors in the spinal cord[J]. Brain Res, 2020, 1732:146674. [6] Kang J, Cho SS, Kim HY, Lee BH, Cho HJ, Gwak YS. Regional hyperexcitability and chronic neuropathic pain following spinal cord injury[J]. Cell Mol Neurobiol, 2020, 40:861-878. [7] Ono D, Honma KI, Honma S. GABAergic mechanisms in the suprachiasmatic nucleus that influence circadian rhythm[J]. J Neurochem, 2021, 157:31-41. [8] Buijs RM, Hurtado-Alvarado G, Soto-Tinoco E. Vasopressin:an output signal from the suprachiasmatic nucleus to prepare physiology and behaviour for the resting phase[J]. J Neuroendocrinol, 2021, 33:e12998. [9] Schulte LH, Haji AA, May A. Phase dependent hypothalamic activation following trigeminal input in cluster headache[J]. J Headache Pain, 2020, 21:30. [10] Sato T, Yajima T, Fujita M, Kobashi M, Ichikawa H, Yoshida R, Mitoh Y. Orexin A and B in the rat superior salivatory nucleus[J]. Auton Neurosci, 2020, 228:102712. [11] Sauerzopf U, Weidenauer A, Dajic I, Bauer M, Bartova L, Meyer B, Nics L, Philippe C, Pfaff S, Pichler V, Mitterhauser M, Wadsak W, Hacker M, Kasper S, Lanzenberger R, Pezawas L, Praschak-Rieder N, Willeit M. Disrupted relationship between blood glucose and brain dopamine D2/3 receptor binding in patients with first-episode schizophrenia[J]. Neuroimage Clin, 2021, 32:102813. [12] Puopolo M. The hypothalamic-spinal dopaminergic system:a target for pain modulation[J]. Neural Regen Res, 2019, 14:925-930. [13] Abdallah K, Monconduit L, Artola A, Luccarini P, Dallel R. GABAAergic inhibition or dopamine denervation of the A11 hypothalamic nucleus induces trigeminal analgesia[J]. Pain, 2015, 156:644-655. [14] Kroeger D, Absi G, Gagliardi C, Bandaru SS, Madara JC, Ferrari LL, Arrigoni E, Münzberg H, Scammell TE, Saper CB, Vetrivelan R. Galanin neurons in the ventrolateral preoptic area promote sleep and heat loss in mice[J]. Nat Commun, 2018, 9:4129. [15] Venner A, De Luca R, Sohn LT, Bandaru SS, Verstegen AMJ, Arrigoni E, Fuller PM. An inhibitory lateral hypothalamic-preoptic circuit mediates rapid arousals from sleep[J]. Curr Biol, 2019, 29:4155-4168.e5. [16] Cheng J, Wu F, Zhang M, Ding D, Fan S, Chen G, Zhang J, Wang L. The interaction between the ventrolateral preoptic nucleus and the tuberomammillary nucleus in regulating the sleep-wakefulness cycle[J]. Front Neurosci, 2020, 14:615854. [17] Pevet P, Challet E, Felder-Schmittbuhl MP. Melatonin and the circadian system:keys for health with a focus on sleep[J]. Handb Clin Neurol, 2021, 179:331-343. [18] Zhang Z, Zhai Q, Gu Y, Zhang T, Huang Z, Liu Z, Liu Y, Xu Y. Impaired function of the suprachiasmatic nucleus rescues the loss of body temperature homeostasis caused by time-restricted feeding[J]. Sci Bull (Beijing), 2020, 65:1268-1280. [19] Cheng AH, Cheng HM. Genesis of the master circadian pacemaker in mice[J]. Front Neurosci, 2021, 15:659974. [20] Berteotti C, Lo Martire V, Alvente S, Bastianini S, Bombardi C, Matteoli G, Ohtsu H, Lin JS, Silvani A, Zoccoli G. Orexin/Hypocretin and histamine cross-talk on hypothalamic neuron counts in mice[J]. Front Neurosci, 2021, 15:660518. [21] Mieda M. The roles of orexins in sleep/wake regulation[J]. Neurosci Res, 2017, 118:56-65. [22] Lau BK, Winters BL, Vaughan CW. Opioid presynaptic disinhibition of the midbrain periaqueductal grey descending analgesic pathway[J]. Br J Pharmacol, 2020, 177:2320-2332. [23] Tobaldini G, Sardi NF, Guilhen VA, Fischer L. Pain inhibits pain:an ascending-descending pain modulation pathway linking mesolimbic and classical descending mechanisms[J]. Mol Neurobiol, 2019, 56:1000-1013. [24] Yoshida K, Nonaka T, Nakamura S, Araki M, Yamamoto T. Microinjection of 26RFa, an endogenous ligand for the glutamine RF-amide peptide receptor (QRFP receptor), into the rostral ventromedial medulla (RVM), locus coelureus (LC), and periaqueductal grey (PAG) produces an analgesic effect in rats[J]. Peptides, 2019, 115:1-7. [25] Chebbi R, Boyer N, Monconduit L, Artola A, Luccarini P, Dallel R. The nucleus raphe magnus OFF-cells are involved in diffuse noxious inhibitory controls[J]. Exp Neurol, 2014, 256:39-45. [26] Hernández N, Vanegas H. Encoding of noxious stimulus intensity by putative pain modulating neurons in the rostral ventromedial medulla and by simultaneously recorded nociceptive neurons in the spinal dorsal horn of rats[J]. Pain, 2001, 91:307-315. [27] Manz KM, Becker JC, Grueter CA, Grueter BA. Histamine H (3) receptor function biases excitatory gain in the nucleus accumbens[J]. Biol Psychiatry, 2021, 89:588-599. [28] Gompf HS, Anaclet C. The neuroanatomy and neurochemistry of sleep-wake control[J]. Curr Opin Physiol, 2020, 15:143-151. [29] Weber F, Hoang Do JP, Chung S, Beier KT, Bikov M, Saffari Doost M, Dan Y. Regulation of REM and Non-REM sleep by periaqueductal GABAergic neurons[J]. Nat Commun, 2018, 9:354. D, Bandaru SS, Madara JC, Vetrivelan R. [30] Kroeger Ventrolateral periaqueductal gray mediates rapid eye movement sleep regulation by melanin-concentrating hormone neurons[J]. Neuroscience, 2019, 406:314-324. [31] Tiseo C, Vacca A, Felbush A, Filimonova T, Gai A, Glazyrina T, Hubalek IA, Marchenko Y, Overeem LH, Piroso S, Tkachev A, Martelletti P, Sacco S; European Headache Federation School of Advanced Studies (EHF-SAS). Migraine and sleep disorders:a systematic review[J]. J Headache Pain, 2020, 21:126. [32] Fakhoury M, Salman I, Najjar W, Merhej G, Lawand N. The lateral hypothalamus:an uncharted territory for processing peripheral neurogenic inflammation[J]. Front Neurosci, 2020, 14:101. [33] Kang X, Tang H, Liu Y, Yuan Y, Wang M. Research progress on the mechanism of orexin in pain regulation in different brain regions[J]. Open Life Sci, 2021, 16:46-52. [34] Kooshki R, Abbasnejad M, Esmaeili-Mahani S, Raoof M, Sheibani V. Activation orexin 1 receptors in the ventrolateral periaqueductal gray matter attenuate nitroglycerin-induced migraine attacks and calcitonin gene related peptide up-regulation in trigeminal nucleus caudalis of rats[J]. Neuropharmacology, 2020, 178:107981. [35] Holland PR, Akerman S, Goadsby PJ. Modulation of nociceptive dural input to the trigeminal nucleus caudalis via activation of the orexin 1 receptor in the rat[J]. Eur J Neurosci, 2006, 24:2825-2833. [36] Bertels Z, Pradhan AAA. Emerging treatment targets for migraine and other headaches[J]. Headache, 2019, 59 Suppl 2:50-65. [37] Peres MF, Valença MM, Amaral FG, Cipolla-Neto J. Current understanding of pineal gland structure and function in headache[J]. Cephalalgia, 2019, 39:1700-1709. [38] Chen WW, Zhang X, Huang WJ. Pain control by melatonin:physiological and pharmacological effects[J]. Exp Ther Med, 2016, 12:1963-1968. [39] Fakhri S, Ahmadpour Y, Rezaei H, Kooshki L, Moradi SZ, Iranpanah A, Gravandi MM, Abbaszadeh F, Ghanbarveisi F. The antinociceptive mechanisms of melatonin:role of L-arginine/nitric oxide/cyclic GMP/KATP channel signaling pathway[J]. Behav Pharmacol, 2020, 31:728-737. [40] Xie S, Fan W, He H, Huang F. Role of melatonin in the regulation of pain[J]. J Pain Res, 2020, 13:331-343. [41] Peres M, Stiles A, Siow C, Dogramji K, Silberstein SD, Cipolla-Neto J. Chronobiological features in episodic and chronic migraine[J]. Cephalalgia, 2003, 23:590-591. [42] Claustrat B, Loisy C, Brun J, Beorchia S, Arnaud JL, Chazot G. Nocturnal plasma melatonin levels in migraine:a preliminary report[J]. Headache, 1989, 29:242-245. [43] Liampas I, Siokas V, Brotis A, Aloizou AM, Mentis AA, Vikelis M, Dardiotis E. Meta-analysis of melatonin levels in cluster headache:review of clinical implications[J]. Acta Neurol Scand, 2020, 142:356-367. [44] Wei DY, Goadsby PJ. Cluster headache pathophysiology:insights from current and emerging treatments[J]. Nat Rev Neurol, 2021, 17:308-324. [45] Peres MF, Sanchez del Rio M, Seabra ML, Tufik S, Abucham J, Cipolla-Neto J, Silberstein SD, Zukerman E. Hypothalamic involvement in chronic migraine[J]. J Neurol Neurosurg Psychiatry, 2001, 71:747-751. [46] Draper-Joyce CJ, Bhola R, Wang J, Bhattarai A, Nguyen ATN, Cowie-Kent I, O'Sullivan K, Chia LY, Venugopal H, Valant C, Thal DM, Wootten D, Panel N, Carlsson J, Christie MJ, White PJ, Scammells P, May LT, Sexton PM, Danev R, Miao Y, Glukhova A, Imlach WL, Christopoulos A. Positive allosteric mechanisms of adenosine A1 receptor-mediated analgesia[J]. Nature, 2021, 597:571-576. [47] Okumura T, Nozu T, Ishioh M, Igarashi S, Kumei S, Ohhira M. Adenosine A(1) receptor agonist induces visceral antinociception via 5-HT(1A), 5-HT(2A), dopamine D(1) or cannabinoid CB(1) receptors, and the opioid system in the central nervous system[J]. Physiol Behav, 2020, 220:112881. [48] Adebiyi MG, Manalo J, Kellems RE, Xia Y. Differential role of adenosine signaling cascade in acute and chronic pain[J]. Neurosci Lett, 2019, 712:134483. [49] Gahr M. Caffeine, the most frequently consumed psychostimulant:a narrative review article[J]. Fortschr Neurol Psychiatr, 2020, 88:318-330. [50] Jagannath A, Varga N, Dallmann R, Rando G, Gosselin P, Ebrahimjee F, Taylor L, Mosneagu D, Stefaniak J, Walsh S, Palumaa T, Di Pretoro S, Sanghani H, Wakaf Z, Churchill GC, Galione A, Peirson SN, Boison D, Brown SA, Foster RG, Vasudevan SR. Adenosine integrates light and sleep signalling for the regulation of circadian timing in mice[J]. Nat Commun, 2021, 12:2113. [51] Hohoff C, Marziniak M, Lesch KP, Deckert J, Sommer C, Mössner R. An adenosine A2A receptor gene haplotype is associated with migraine with aura[J]. Cephalalgia, 2007, 27:177-181. [52] Venner A, Broadhurst RY, Sohn LT, Todd WD, Fuller PM. Selective activation of serotoninergic dorsal raphe neurons facilitates sleep through anxiolysis[J]. Sleep, 2020, 43:zsz231. [53] Seifinejad A, Li S, Possovre ML, Vassalli A, Tafti M. Hypocretinergic interactions with the serotonergic system regulate REM sleep and cataplexy[J]. Nat Commun, 2020, 11:6034. [54] Kong EL, Wu FX, Yu WF. 5-hydroxytryptamine receptor and its role in pain regulation:research progress[J]. Di Er Jun Yi Da Xue Xue Bao, 2016, 37:1517-1523[.孔二亮, 吴飞翔, 俞卫锋. 5-羟色胺受体及其在疼痛调控中的研究进展[J]. 第二军医大学学报, 2016, 37:1517-1523.] [55] Brüning CA, Gai BM, Soares SM, Martini F, Nogueira CW. Serotonergic systems are implicated in antinociceptive effect of m-trifluoromethyl diphenyl diselenide in the mouse glutamate test[J]. Pharmacol Biochem Behav, 2014, 125:15-20. [56] Mendell LM. Constructing and deconstructing the gate theory of pain[J]. Pain, 2014, 155:210-216. M, Carbonetto S, [57] Lorenzo LE, Godin AG, Wang F, St-Louis Wiseman PW, Ribeiro-da-Silva A, De Koninck Y. Gephyrin clusters are absent from small diameter primary afferent terminals despite the presence of GABA(A) receptors[J]. J Neurosci, 2014, 34:8300-8317. [58] Patel R, Dickenson AH. Modality selective roles of pro-nociceptive spinal 5-HT2A and 5-HT3 receptors in normal and neuropathic states[J]. Neuropharmacology, 2018, 143:29-37. [59] Deen M, Hougaard A, Hansen HD, Schain M, Dyssegaard A, Knudsen GM, Ashina M. Association between sumatriptan treatment during a migraine attack and central 5-HT1B receptor binding[J]. JAMA Neurol, 2019, 76:834-840. [60] Wu X, Qiu F, Wang Z, Liu B, Qi X. Correlation of 5-HTR6 gene polymorphism with vestibular migraine[J]. J Clin Lab Anal, 2020, 34:e23042. [61] Kim J, Cho SJ, Kim WJ, Yang KI, Yun CH, Chu MK. Impact of migraine on the clinical presentation of insomnia:a population-based study[J]. J Headache Pain, 2018, 19:86. [62] Buse DC, Reed ML, Fanning KM, Bostic R, Dodick DW, Schwedt TJ, Munjal S, Singh P, Lipton RB. Comorbid and co-occurring conditions in migraine and associated risk of increasing headache pain intensity and headache frequency:results of the migraine in America symptoms and treatment (MAST) study[J]. J Headache Pain, 2020, 21:23. [63] Kim J, Cho SJ, Kim WJ, Yang KI, Yun CH, Chu MK. Insomnia in probable migraine:a population-based study[J]. J Headache Pain, 2016, 17:92. [64] Odegård SS, Sand T, Engstrøm M, Stovner LJ, Zwart JA, Hagen K. The long-term effect of insomnia on primary headaches:a prospective population-based cohort study (HUNT-2 and HUNT-3)[J]. Headache, 2011, 51:570-580. [65] Rodríguez-Almagro D, Achalandabaso-Ochoa A, Obrero-Gaitán E, Osuna-Pérez MC, Ibáñez-Vera AJ, Lomas-Vega R. Sleep alterations in female college students with migraines[J]. Int J Environ Res Public Health, 2020, 17:5456. S, Ursitti [66] Voci A, Bruni O, Ferilli MAN, Papetti L, Tarantino F, Sforza G, Vigevano F, Mazzone L, Valeriani M, Moavero R. Sleep disorders in pediatric migraine:a questionnaire-based study[J]. J Clin Med, 2021, 10:3575. [67] Leso V, Gervetti P, Mauro S, Macrini MC, Ercolano ML, Iavicoli I. Shift work and migraine:a systematic review[J]. J Occup Health, 2020, 62:e12116. [68] Poulsen AH, Younis S, Thuraiaiyah J, Ashina M. The chronobiology of migraine:a systematic review[J]. J Headache Pain, 2021, 22:76. [69] Bjorvatn B, Pallesen S, Moen BE, Waage S, Kristoffersen ES. Migraine, tension-type headache and medication-overuse headache in a large population of shift working nurses:a cross-sectional study in Norway[J]. BMJ Open, 2018, 8:e22403. [70] Ong JC, Park M. Chronic headaches and insomnia:working toward a biobehavioral model[J]. Cephalalgia, 2012, 32:1059-1070. [71] Park JW, Cho SJ, Park SG, Chu MK. Circadian variations in the clinical presentation of headaches among migraineurs:a study using a smartphone headache diary[J]. Chronobiol Int, 2018, 35:546-554. [72] Kristiansen HA, Kværner KJ, Akre H, Overland B, Russell MB. Migraine and sleep apnea in the general population[J]. J Headache Pain, 2011, 12:55-61. [73] KoÇ G, Metİn KM, AkÇay BD, Karadaş Ö, Sayin R, Yetkİn S. Relationship between apnea-hypopnea index and oxygen desaturation in REM-sleep period and morning headache in patients with obstructive sleep apnea syndrome[J]. Noro Psikiyatr Ars, 2019, 57:294-298. [74] Spałka J, Kędzia K, Kuczyński W, Kudrycka A, Małolepsza A, Białasiewicz P, Mokros Ł. Morning headache as an obstructive sleep apnea-related symptom among sleep clinic patients:a cross-section analysis[J]. Brain Sci, 2020, 10:57. Reed ML, [75] Buse DC, Rains JC, Pavlovic JM, Fanning KM, Manack Adams A, Lipton RB. Sleep disorders among people with migraine:results from the chronic migraine epidemiology and outcomes (CaMEO) study[J]. Headache, 2019, 59:32-45. [76] Waliszewska-Prosół M, Nowakowska-Kotas M, Chojdak-Łukasiewicz J, Budrewicz S. Migraine and sleep:an unexplained association[J]? Int J Mol Sci, 2021, 22:5539. JT, [77] Dahmen N, Kasten M, Wieczorek S, Gencik M, Epplen Ullrich B. Increased frequency of migraine in narcoleptic patients:a confirmatory study[J]. Cephalalgia, 2003, 23:14-19. [78] Suzuki K, Miyamoto M, Miyamoto T, Inoue Y, Matsui K, Nishida S, Hayashida K, Usui A, Ueki Y, Nakamura M, Murata M, Numao A, Watanabe Y, Suzuki S, Hirata K. The prevalence and characteristics of primary headache and dream-enacting behaviour in Japanese patients with narcolepsy or idiopathic hypersomnia:a multi-centre cross-sectional study[J]. PLoS One, 2015, 10:e0139229. Chang HY, Hsieh VC. [79] Yang CP, Hsieh ML, Chiang JH, Migraine and risk of narcolepsy in children:a nationwide longitudinal study[J]. PLoS One, 2017, 12:e0189231. [80] DMKG Study Group. Migraine and idiopathic narcolepsy:a case-control study[J]. Cephalalgia, 2003, 23:786-789. [81] Bassetti CLA, Adamantidis A, Burdakov D, Han F, Gay S, Kallweit U, Khatami R, Koning F, Kornum BR, Lammers GJ, Liblau RS, Luppi PH, Mayer G, Pollmächer T, Sakurai T, Sallusto F, Scammell TE, Tafti M, Dauvilliers Y. Narcolepsy:clinical spectrum, aetiopathophysiology, diagnosis and treatment[J]. Nat Rev Neurol, 2019, 15:519-539. [82] Kaushik MK, Aritake K, Cherasse Y, Imanishi A, Kanbayashi T, Urade Y, Yanagisawa M. Induction of narcolepsy-like symptoms by orexin receptor antagonists in mice[J]. Sleep, 2021, 44:zsab043. neural circuit of orexin (hypocretin): [83] Sakurai T. The maintaining sleep and wakefulness[J]. Nat Rev Neurosci, 2007, 8:171-181. [84] Wang J, Gao Y, Liu L, Xu W, Zhang P, Liu Y, Qian X, Yu S. The association between migraine and restless legs syndrome:an updated systematic review and meta-analysis[J]. Sleep Med, 2019, 57:21-29. [85] Seeman MV. Why are women prone to restless legs syndrome[J]? Int J Environ Res Public Health, 2020, 17:368. [86] Sun S, Liu C, Jia Y, Wu J, Li H, Li X, Zhao Y. Association between migraine complicated with restless legs syndrome and vitamin D[J]. Front Neurol, 2021, 12:777721. [87] Chen PK, Fuh JL, Chen SP, Wang SJ. Association between restless legs syndrome and migraine[J]. J Neurol Neurosurg Psychiatry, 2010, 81:524-528. [88] Trenkwalder C, Allen R, Högl B, Paulus W, Winkelmann J.Restless legs syndrome associated with major diseases:a systematic review and new concept[J]. Neurology, 2016, 86:1336-1343. [89] Yang FC, Chou KH, Lee PL, Yin JH, Chen SY, Kao HW, Sung YF, Chou CH, Tsai CK, Tsai CL, Lin CP, Lee JT. Patterns of gray matter alterations in migraine and restless legs syndrome[J]. Ann Clin Transl Neurol, 2018, 6:57-67. [90] Mastria G, Mancini V, Cesare MD, Puma M, Alessiani M, Petolicchio B, Viganò A, Piero VD. Prevalence and characteristics of Alice in Wonderland Syndrome in adult migraineurs:perspectives from a tertiary referral headache unit[J]. Cephalalgia, 2021, 41:515-524. [91] Rastogi RG, Vanderpluym J, Lewis KS. Migrainous aura, visual snow, and "Alice in Wonderland" syndrome in childhood[J]. Semin Pediatr Neurol, 2016, 23:14-17. [92] Haggiag A, Speciali JG. A new biofeedback approach for the control of awake bruxism and chronic migraine headache:utilization of an awake posterior interocclusal device[J]. Arq Neuropsiquiatr, 2020, 78:397-402. [93] Latysheva NV, Platonova AS, Filatova EG. Temporomandibular disorder and cervicalgia:pathophysiology underlying the comorbidity with chronic migraine[J]. Zh Nevrol Psikhiatr Im S S Korsakova, 2019, 119:17-22. [94] Memmedova F, Emre U, Yalın OÖ, Doğan OC. Evaluation of temporomandibular joint disorder in headache patients[J]. Neurol Sci, 2021, 42:4503-4509. [95] Chu MK. Sleep apnoea and poor sleep quality in patients with chronic migraine[J]. Nat Rev Neurol, 2019, 15:130-131. [96] Wu XW, Luo L, Yang XS. Clinical risk factors for chronicity of migraine[J]. Guo Ji Shen Jing Bing Xue Shen Jing Wai Ke Xue Za Zhi, 2019, 46:609-613[.乌欣蔚, 罗龙, 杨晓苏. 偏头痛慢性转化的临床危险因素分析[J]. 国际神经病学神经外科学杂志, 2019, 46:609-613.] [97] Abdurakhmonava K, Rakhimbaeva G. Effects of depression, anxiety and sleep disturbances on the quality of life in patients with episodic and chronic migraine[J]. J Neurol Sci, 2019, 405:20-21. [98] Ong JC, Taylor HL, Park M, Burgess HJ, Fox RS, Snyder S, Rains JC, Espie CA, Wyatt JK. Can circadian dysregulation exacerbate migraines[J]? Headache, 2018, 58:1040-1051. [99] Aydinlar EI, Dikmen PY, Kosak S, Kocaman AS. OnabotulinumtoxinA effectiveness on chronic migraine, negative emotional states and sleep quality:a single-center prospective cohort study[J]. J Headache Pain, 2017, 18:23. [100] Vgontzas A, Li W, Mostofsky E, Rueschman M, Mittleman MA, Bertisch SM. Associations between migraine attacks and nightly sleep characteristics among adults with episodic migraine:a prospective cohort study[J]. Sleep, 2020, 43:zsaa001. [101] Song TJ, Cho SJ, Kim WJ, Yang KI, Yun CH, Chu MK. Poor sleep quality in migraine and probable migraine:a population study[J]. J Headache Pain, 2018, 19:58. |