[1] Jiang JY, Gao GY, Feng JF, Mao Q, Chen LG, Yang XF, Liu JF, Wang YH, Qiu BH, Huang XJ. Traumatic brain injury in China[J]. Lancet Neurol, 2019, 18:286-295.
[2] Maas AI, Menon DK, Adelson PD, Andelic N, Bell MJ, Belli A, Bragge P, Brazinova A, Büki A, Chesnut RM, Citerio G, Coburn M, Cooper DJ, Crowder AT, Czeiter E, Czosnyka M, Diaz-Arrastia R, Dreier JP, Duhaime AC, Ercole A, van Essen TA, Feigin VL, Gao G, Giacino J, Gonzalez-Lara LE, Gruen RL, Gupta D, Hartings JA, Hill S, Jiang JY, Ketharanathan N, Kompanje EJO, Lanyon L, Laureys S, Lecky F, Levin H, Lingsma HF, Maegele M, Majdan M, Manley G, Marsteller J, Mascia L, McFadyen C, Mondello S, Newcombe V, Palotie A, Parizel PM, Peul W, Piercy J, Polinder S, Puybasset L, Rasmussen TE, Rossaint R, Smielewski P, Söderberg J, Stanworth SJ, Stein MB, von Steinbüchel N, Stewart W, Steyerberg EW, Stocchetti N, Synnot A, Ao BT, Tenovuo O, Theadom A, Tibboel D, Videtta W, Wang KK, Williams WH, Wilson L, Yaffe K; InTBIR Participants and Investigators. Traumatic brain injury:integrated approaches to improve prevention, clinical care, and research[J]. Lancet Neurol, 2017, 16:987-1048.
[3] Zhang J, Zhang F, Dong JF. Coagulopathy induced by traumatic brain injury:systemic manifestation of a localized injury[J]. Blood, 2018, 131:2001-2006.
[4] van Gent JA, van Essen TA, Bos MH, Cannegieter SC, van Dijck JT, Peul WC. Coagulopathy after hemorrhagic traumatic brain injury, an observational study of the incidence and prognosis[J]. Acta Neurochir (Wien), 2020, 162:329-336.
[5] Talving P, Benfield R, Hadjizacharia P, Inaba K, Chan LS, Demetriades D. Coagulopathy in severe traumatic brain injury:a prospective study[J]. J Trauma, 2009, 66:55-62.
[6] Maegele M, Schöchl H, Menovsky T, Maréchal H, Marklund N, Buki A, Stanworth S. Coagulopathy and haemorrhagic progression in traumatic brain injury:advances in mechanisms, diagnosis, and management[J]. Lancet Neurol, 2017, 16:630-647.
[7] Kornblith LZ, Moore HB, Cohen MJ. Trauma-induced coagulopathy:the past, present, and future[J]. J Thromb Haemost, 2019, 17:852-862.
[8] Duque P, Mora L, Levy JH, Schöchl H. Pathophysiological response to trauma-induced coagulopathy:a comprehensive review[J]. Anesth Analg, 2020, 130:654-664.
[9] Nakae R, Takayama Y, Kuwamoto K, Naoe Y, Sato H, Yokota H. Time course of coagulation and fibrinolytic parameters in patients with traumatic brain injury[J]. J Neurotrauma, 2016, 33:688-695.
[10] Maegele M, Aversa J, Marsee MK, McCauley R, Chitta SH, Vyakaranam S, Walsh M. Changes in coagulation following brain injury[J]. Semin Thromb Hemost, 2020, 46:155-166.
[11] Albert V, Arulselvi S, Agrawal D, Pati HP, Pandey RM. Early posttraumatic changes in coagulation and fibrinolysis systems in isolated severe traumatic brain injury patients and its influence on immediate outcome[J]. Hematol Oncol Stem Cell Ther, 2018,12:32-43.
[12] Martin G, Shah D, Elson N, Boudreau R, Hanseman D, Pritts TA, Makley AT, Foreman B, Goodman MD. Relationship of coagulopathy and platelet dysfunction to transfusion needs after traumatic brain injury[J]. Neurocrit Care, 2018, 28:330-337.
[13] Carnevale JA, Segar DJ, Powers AY, Shah M, Doberstein C, Drapcho B, Morrison JF, Williams JR, Collins S, Monteiro K, Asaad WF. Blossoming contusions:identifying factors contributing to the expansion of traumatic intracerebral hemorrhage[J]. J Neurosurg, 2018, 129:1305-1316.
[14] Roozenbeek B, Maas AI, Menon DK. Changing patterns in the epidemiology of traumatic brain injury[J]. Nat Rev Neurol, 2013, 9:231-236.
[15] Scotti P, Séguin C, Lo BW, de Guise E, Troquet JM, Marcoux J. Antithrombotic agents and traumatic brain injury in the elderly population:hemorrhage patterns and outcomes[J]. J Neurosurg, 2019, 5:1-10.
[16] Hecht JP, LaDuke ZJ, Cain-Nielsen AH, Hemmila MR, Wahl WL. Effect of preinjury oral anticoagulants on outcomes following traumatic brain injury from falls in older adults[J]. Pharmacotherapy, 2020, 40:604-613.
[17] Probst MA, Gupta M, Hendey GW, Rodriguez RM, Winkel G, Loo GT, Mower WR. Prevalence of intracranial injury in adult patients with blunt head trauma with and without anticoagulant or antiplatelet use[J]. Ann Emerg Med, 2020, 75:354-364.
[18] Zeeshan M, Jehan F, O'Keeffe T, Khan M, Zakaria ER, Hamidi M, Gries L, Kulvatunyou N, Joseph B. The novel oral anticoagulants (NOACs) have worse outcomes compared with warfarin in patients with intracranial hemorrhage after TBI[J]. J Trauma Acute Care Surg, 2018, 85:915-920.
[19] Prexl O, Bruckbauer M, Voelckel W, Grottke O, Ponschab M, Maegele M, Schöchl H. The impact of direct oral anticoagulants in traumatic brain injury patients greater than 60-years-old[J]. Scand J Trauma Resusc Emerg Med, 2018, 26:20.
[20] Nederpelt CJ, van der Aalst SJ, Rosenthal MG, Krijnen P, Huisman MV, Peul WC, Schipper IB. Consequences of preinjury utilization of direct oral anticoagulants in patients with traumatic brain injury:a systematic review and Meta-analysis[J]. J Trauma Acute Care Surg, 2020, 88:186-194.
[21] Greuters S, van den Berg A, Franschman G, Viersen VA, Beishuizen A, Peerdeman SM, Boer C; ALARM-BLEEDING Investigators. Acute and delayed mild coagulopathy are related to outcome in patients with isolated traumatic brain injury[J]. Crit Care, 2011, 15:R2.
[22] Veenith TV, Carter EL, Geeraerts T, Grossac J, Newcombe VF, Outtrim J, Gee GS, Lupson V, Smith R, Aigbirhio FI, Fryer TD, Hong YT, Menon DK, Coles JP. Pathophysiologic mechanisms of cerebral ischemia and diffusion hypoxia in traumatic brain injury[J]. JAMA Neurol, 2016, 73:542-550.
[23] Schwarzmaier SM, de Chaumont C, Balbi M, Terpolilli NA, Kleinschnitz C, Gruber A, Plesnila N. The formation of microthrombi in parenchymal microvessels after traumatic brain injury is independent of coagulation factor Ⅺ[J]. J Neurotrauma, 2016, 33:1634-1644.
[24] Hopp S, Albert-Weissenberger C, Mencl S, Bieber M, Schuhmann MK, Stetter C, Nieswandt B, Schmidt PM, Monoranu CM, Alafuzoff I, Marklund N, Nolte MW, Sirén AL, Kleinschnitz C. Targeting coagulation factor Ⅻ as a novel therapeutic option in brain trauma[J]. Ann Neurol, 2016, 79:970-982.
[25] Juratli TA, Zang B, Litz RJ, Sitoci KH, Aschenbrenner U, Gottschlich B, Daubner D, Schackert G, Sobottka SB. Early hemorrhagic progression of traumatic brain contusions:frequency, correlation with coagulation disorders, and patient outcome:a prospective study[J]. J Neurotrauma, 2014, 31:1521-1527.
[26] Rao A, Lin A, Hilliard C, Fu R, Lennox T, Barbosa R, Schreiber M, Rowell S. The utility of thromboelastography for predicting the risk of progression of intracranial hemorrhage in traumatic brain injury patients[J]. Neurosurgery, 2017, 64:182-187.
[27] Gan ZS, Stein SC, Swanson R, Guan S, Garcia L, Mehta D, Smith DH. Blood biomarkers for traumatic brain injury:a quantitative assessment of diagnostic and prognostic accuracy[J]. Front Neurol, 2019, 10:446.
[28] Nekludov M, Mobarrez F, Gryth D, Bellander BM, Wallen H. Formation of microparticles in the injured brain of patients with severe isolated traumatic brain injury[J]. J Neurotrauma, 2014, 31:1927-1933.
[29] Tian Y, Salsbery B, Wang M, Yuan H, Yang J, Zhao Z, Wu X, Zhang Y, Konkle BA, Thiagarajan P, Li M, Zhang J, Dong JF. Brain-derived microparticles induce systemic coagulation in a murine model of traumatic brain injury[J]. Blood, 2015, 125:2151-2159.
[30] Zhao Z, Wang M, Tian Y, Hilton T, Salsbery B, Zhou EZ, Wu X, Thiagarajan P, Boilard E, Li M, Zhang J, Dong JF. Cardiolipin-mediated procoagulant activity of mitochondria contributes to traumatic brain injury-associated coagulopathy in mice[J]. Blood, 2016, 127:2763-2772.
[31] Nekludov M, Bellander BM, Gryth D, Wallen H, Mobarrez F. Brain-derived microparticles in patients with severe isolated TBI[J]. Brain Inj, 2017, 31:1856-1862.
[32] Zhou Y, Cai W, Zhao Z, Hilton T, Wang M, Yeon J, Liu W, Zhang F, Shi FD, Wu X, Thiagarajan P, Li M, Zhang J, Dong JF. Lactadherin promotes microvesicle clearance to prevent coagulopathy and improves survival of severe TBI mice[J]. Blood, 2018, 131:563-572.
[33] Wu Y, Liu W, Zhou Y, Hilton T, Zhao Z, Liu W, Wang M, Yeon J, Houck K, Thiagarajan P, Zhang F, Shi FD, Wu X, Li M, Dong JF, Zhang J. von Willebrand factor enhances microvesicle-induced vascular leakage and coagulopathy in mice with traumatic brain injury[J]. Blood, 2018, 132:1075-1084.
[34] Drake TA, Morrissey JH, Edgington TS. Selective cellular expression of tissue factor in human tissues:implications for disorders of hemostasis and thrombosis[J]. Am J Pathol, 1989, 134:1087-1097.
[35] McCully SP, Schreiber MA. Traumatic brain injury and its effect on coagulopathy[J]. Semin Thromb Hemost, 2013, 39:896-901.
[36] Sun Y, Wang J, Wu X, Xi C, Gai Y, Liu H, Yuan Q, Wang E, Gao L, Hu J, Zhou L. Validating the incidence of coagulopathy and disseminated intravascular coagulation in patients with traumatic brain injury:analysis of 242 cases[J]. Br J Neurosurg, 2011, 25:363-368.
[37] Wada T, Gando S, Maekaw K, Katabami K, Sageshima H, Hayakawa M, Sawamura A. Disseminated intravascular coagulation with increased fibrinolysis during the early phase of isolated traumatic brain injury[J]. Crit Care, 2017, 21:219.
[38] Albert V, Subramanian A, Agrawal D, Pati HP, Gupta SD, Mukhopadhyay AK. Acute traumatic endotheliopathy in isolated severe brain injury and its impact on clinical outcome[J]. Med Sci (Basel), 2018, 6:5.
[39] Rodriguez GE, Cardenas JC, Cox CS, Kitagawa RS, Stensballe J, Holcomb JB, Johansson PI, Wade CE. Traumatic brain injury is associated with increased syndecan-1 shedding in severely injured patients[J]. Scand J Trauma Resusc Emerg Med, 2018, 26:102.
[40] Kumar MA, Cao W, Pham HP, Raju D, Nawalinski K, Maloney-Wilensky E, Schuster J, Zheng XL. Relative deficiency of plasma a disintegrin and metalloprotease with thrombospondin type 1 repeats 13 activity and elevation of human neutrophil peptides in patients with traumatic brain injury[J]. J Neurotrauma, 2019, 36:222-229.
[41] Jackson SP, Darbousset R, Schoenwaelder SM. Thromboinflammation:challenges of therapeutically targeting coagulation and other host defense mechanisms[J]. Blood, 2019, 133:906-918.
[42] Stoll G, Nieswandt B. Thrombo-inflammation in acute ischaemic stroke:implications for treatment[J]. Nat Rev Neurol, 2019, 15:473-481.
[43] Schnüriger B, Inaba K, Abdelsayed GA, Lustenberger T, Eberle BM, Barmparas G, Talving P, Demetriades D. The impact of platelets on the progression of traumatic intracranial hemorrhage[J]. J Trauma, 2010, 68:881-885.
[44] Kay AB, Morris DS, Collingridge DS, Majercik S. Platelet dysfunction on thromboelastogram is associated with severity of blunt traumatic brain injury[J]. Am J Surg, 2019, 218:1134-1137.
[45] Huang S, Tang Y, Lin W, Wen K, Han W, Lin Z, Han M. Study on coagulation profiles and platelet function in trauma-induced coagulopathy caused by three types of injury[J]. Injury, 2020, 51:1312-1320.
[46] Daley MJ, Enright Z, Nguyen J, Ali S, Clark A, Aydelotte JD, Teixeira PG, Coopwood TB, Brown CV. Adenosine diphosphate platelet dysfunction on thromboelastogram is independently associated with increased morality in traumatic brain injury[J]. Eur J Trauma Emerg Surg, 2017, 43:105-111.
[47] Furay E, Daley M, Teixeira PG, Coopwood TB, Aydelotte JD, Malesa N, Tellinghuisen C, Ali S, Brown LH, Brown CV. Goal-directed platelet transfusions correct platelet dysfunction and may improve survival in patients with severe traumatic brain injury[J]. J Trauma Acute Care Surg, 2018, 85:881-887.
[48] Martin GE, Pugh AM, Moran R, Veile R, Friend LA, Pritts TA, Makley AT, Caldwell CC, Goodman MD. Microvesicles generated following traumatic brain injury induce platelet dysfunction via adenosine diphosphate receptor[J]. J Trauma Acute Care Surg, 2019, 86:592-600.
[49] Donahue DL, Beck J, Fritz B, Davis P, Sandoval-Cooper MJ, Thomas SG, Yount RA, Walsh M, Ploplis VA, Castellino FJ. Early platelet dysfunction in a rodent model of blunt traumatic brain injury reflects the acute traumatic coagulopathy found in humans[J]. J Neurotrauma, 2014, 31:404-410.
[50] Fair K, Farrell D, McCully B, Rick E, Dewey EN, Hilliard C, Dean R, Lin AL, Hinson HE, Barbosa RR, Schreiber M, Rowell SE. Fibrinolytic activation in patients with progressive intracranial hemorrhage after traumatic brain injury[J]. J Neurotrauma, 2019.[Online ahead of print]
[51] Karri J, Cardenas JC, Matijevic N, Wang YW, Choi S, Zhu L, Cotton BA, Kitagawa R, Holcomb JB, Wade CE. Early fibrinolysis associated with hemorrhagic progression following traumatic brain injury[J]. Shock, 2017, 48:644-650.
[52] Xu DX, Du WT, Li X, Wu ZX, Yu GF. D-dimer/fibrinogen ratio for the prediction of progressive hemorrhagic injury after traumatic brain injury[J]. Clin Chim Acta, 2020, 507:143-148.
[53] Hijazi N, Abu Fanne R, Abramovitch R, Yarovoi S, Higazi M, Abdeen S, Basheer M, Maraga E, Cines DB, Higazi AA. Endogenous plasminogen activators mediate progressive intracerebral hemorrhage after traumatic brain injury in mice[J]. Blood, 2015, 125:2558-2567.
[54] Samuels JM, Moore EE, Silliman CC, Banerjee A, Cohen MJ, Ghasabyan A, Chandler J, Coleman JR, Sauaia A. Severe traumatic brain injury is associated with a unique coagulopathy phenotype[J]. J Trauma Acute Care Surg, 2019, 86:686-693.
[55] Moore HB, Moore EE. Temporal changes in fibrinolysis following injury[J]. Semin Thromb Hemost, 2020, 46:189-198.
[56] Moore HB, Moore EE, Liras IN, Gonzalez E, Harvin JA, Holcomb JB, Sauaia A, Cotton BA. Acute fibrinolysis shutdown after injury occurs frequently and increases mortality:a multicenter evaluation of 2, 540 severely injured patients[J]. J Am Coll Surg, 2016, 222:347-355.
[57] Leeper CM, Neal MD, McKenna CJ, Gaines BA. Trending fibrinolytic dysregulation:fibrinolysis shutdown in the days after injury is associated with poor outcome in severely injured children[J]. Ann Surg, 2017, 266:508-515.
[58] Griffin JH, Zlokovic BV, Mosnier LO. Activated protein C, protease activated receptor 1, and neuroprotection[J]. Blood, 2018, 132:159-169.
[59] Lustenberger T, Talving P, Kobayashi L, Barmparas G, Inaba K, Lam L, Branco BC, Demetriades D. Early coagulopathy after isolated severe traumatic brain injury:relationship with hypoperfusion challenged[J]. J Trauma, 2010, 69:1410-1414.
[60] Dekker SE, Duvekot A, de Vries HM, Geeraedts LM Jr, Peerdeman SM, de Waard MC, Boer C, Schober P. Relationship between tissue perfusion and coagulopathy in traumatic brain injury[J]. J Surg Res, 2016, 205:147-154.
[61] Sillesen M, Rasmussen LS, Jin G, Jepsen CH, Imam A, Hwabejire JO, Halaweish I, DeMoya M, Velmahos G, Johansson PI, Alam HB. Assessment of coagulopathy, endothelial injury, and inflammation after traumatic brain injury and hemorrhage in a porcine model[J]. J Trauma Acute Care Surg, 2014, 76:12-20.
[62] Epstein DS, Mitra B, Cameron PA, Fitzgerald M, Rosenfeld JV. Normalization of coagulopathy is associated with improved outcome after isolated traumatic brain injury[J]. J Clin Neurosci, 2016, 29:64-69.
[63] Spahn DR, Bouillon B, Cerny V, Duranteau J, Filipescu D, Hunt BJ, Komadina R, Maegele M, Nardi G, Riddez L, Samama CM, Vincent JL, Rossaint R. The European guideline on management of major bleeding and coagulopathy following trauma:fifth edition[J]. Crit Care, 2019, 23:98.
[64] Chiu CC, Liao YE, Yang LY, Wang JY, Tweedie D, Karnati HK, Greig NH, Wang JY. Neuroinflammation in animal models of traumatic brain injury[J]. J Neurosci Methods, 2016, 272:38-49.
[65] Wiegele M, Schöchl H, Haushofer A, Ortler M, Leitgeb J, Kwasny O, Beer R, Ay C, Schaden E. Diagnostic and therapeutic approach in adult patients with traumatic brain injury receiving oral anticoagulant therapy:an Austrian interdisciplinary consensus statement[J]. Crit Care, 2019, 23:62.
[66] Shin SS, Marsh EB, Ali H, Nyquist PA, Hanley DF, Ziai WC. Comparison of traumatic intracranial hemorrhage expansion and outcomes among patients on direct oral anticoagulants versus vitamin kantagonists[J]. Neurocrit Care, 2020, 32:407-418.
[67] CRASH-3 Trial Collaborators. Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with acute traumatic brain injury (CRASH-3):a randomised, placebo-controlled trial[J]. Lancet, 2019, 394:1713-1723.
[68] Fakharian E, Abedzadeh-Kalahroudi M, Atoof F. Effect of tranexamic acid on prevention of hemorrhagic mass growth in patients with traumatic brain injury[J]. World Neurosurg, 2018, 109:e748-753.
[69] Huijben JA, van der Jagt M, Cnossen MC, Kruip M, Haitsma IK, Stocchetti N, Maas AI, Menon DK, Ercole A, Maegele M, Stanworth SJ, Citerio G, Polinder S, Steyerberg EW, Lingsma HF. Variation in blood transfusion and coagulation management in traumatic brain injury at the intensive care unit:a survey in 66 neurotrauma centers participating in the collaborative European neurotrauma effectiveness research in traumatic brain injury study[J]. J Neurotrauma, 2017.[Online ahead of print]
[70] Zhang LM, Li R, Zhao XC, Zhang Q, Luo XL. Increased transfusion of fresh frozen plasma is associated with mortality or worse functional outcomes after severe traumatic brain injury:a retrospective study[J]. World Neurosurg, 2017, 104:381-389.
[71] Nakae R, Yokobori S, Takayama Y, Kanaya T, Fujiki Y, Igarashi Y, Suzuki G, Naoe Y, Fuse A, Yokota H. A retrospective study of the effect of fibrinogen levels during fresh frozen plasma transfusion in patients with traumatic brain injury[J]. Acta Neurochir (Wien), 2019, 161:1943-1953.
[72] Brogi E, Corbella D, Coccolini F, Gamberini E, Russo E, Agnoletti V, Forfori F. The role of platelet transfusions after intracranial hemorrhage in patients on antiplatelet agents:a systematic review and Meta-analysis[J]. World Neurosurg, 2020,11:S1878-8750(20)30687-2.
[73] Robertson CS, Hannay HJ, Yamal JM, Gopinath S, Goodman JC, Tilley BC; Epo Severe TBI Trial Investigators; Baldwin A, Rivera Lara L, Saucedo-Crespo H, Ahmed O, Sadasivan S, Ponce L, Cruz-Navarro J, Shahin H, Aisiku IP, Doshi P, Valadka A, Neipert L, Waguspack JM, Rubin ML, Benoit JS, Swank P. Effect of erythropoietin and transfusion threshold on neurological recovery after traumatic brain injury:a randomized clinical trial[J]. JAMA, 2014, 312:36-47.
[74] Vedantam A, Yamal JM, Rubin ML, Robertson CS, Gopinath SP. Progressive hemorrhagic injury after severe traumatic brain injury:effect of hemoglobin transfusion thresholds[J]. J Neurosurg, 2016, 125:1229-1234.
[75] Yuan Q, Wu X, Du ZY, Sun YR, Yu J, Li ZQ, Wu XH, Mao Y, Zhou LF, Hu J. Low-dose recombinant factor Ⅶa for reversing coagulopathy in patients with isolated traumatic brain injury[J]. J Crit Care, 2015, 30:116-120.
[76] Stolla M, Zhang F, Meyer MR, Zhang J, Dong JF. Current state of transfusion in traumatic brain injury and associated coagulopathy[J]. Transfusion, 2019, 59:1522-1528. |