[1] Mesulam MM. Primary progressive aphasia and the language network:the 2013 H. Houston Merritt Lecture[J]. Neurology, 2013, 81:456-462.
[2] Spinelli EG, Mandelli ML, Miller ZA, Santos-Santos MA, Wilson SM, Agosta F, Grinberg LT, Huang EJ, Trojanowski JQ, Meyer M, Henry ML, Comi G, Rabinovici G, Rosen HJ, Filippi M, Miller BL, Seeley WW, Gorno-Tempini ML. Typical and atypical pathology in primary progressive aphasia variants[J]. Ann Neurol, 2017, 81:430-443.
[3] Ji T, Ye S, Fan DS. Gene characteristics in frontotemporal dementia and its correlations with amyotrophic lateral sclerosis[J]. Zhonghua Nei Ke Za Zhi, 2017, 56:781-784.[冀拓, 叶珊, 樊东升. 额颞叶痴呆的致病基因特点及其与肌萎缩侧索硬化关系[J]. 中华内科杂志, 2017, 56:781-784.]
[4] Olszewska DA, Lonergan R, Fallon EM, Lynch T. Genetics of frontotemporal dementia[J]. Curr Neurol Neurosci Rep, 2016, 16:107.
[5] Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, Ogar JM, Rohrer JD, Black S, Boeve BF, Manes F, Dronkers NF, Vandenberghe R, Rascovsky K, Patterson K, Miller BL, Knopman DS, Hodges JR, Mesulam MM, Grossman M. Classification of primary progressive aphasia and its variants[J]. Neurology, 2011, 76:1006-1014.
[6] Hales CM, Hu WT. From frontotemporal lobar degeneration pathology to frontotemporal lobar degeneration biomarkers[J]. Int Rev Psychiatry, 2013, 25:210-220.
[7] Bian H, Van Swieten JC, Leight S, Massimo L, Wood E, Forman M, Moore P, de Koning I, Clark CM, Rosso S, Trojanowski J, Lee VM, Grossman M. CSF biomarkers in frontotemporal lobar degeneration with known pathology[J]. Neurology, 2008, 70:1827-1835.
[8] Steinacker P, Hendrich C, Sperfeld AD, Jesse S, von Arnim CA, Lehnert S, Pabst A, Uttner I, Tumani H, Lee VM, Trojanowski JQ, Kretzschmar HA, Ludolph A, Neumann M, Otto M. TDP-43 in cerebrospinal fluid of patients with frontotemporal lobar degeneration and amyotrophic lateral sclerosis[J]. Arch Neurol, 2008, 65:1481-1487.
[9] Kuiperij HB, Versleijen AA, Beenes M, Verwey NA, Benussi L, Paterlini A, Binetti G, Teunissen CE, Raaphorst J, Schelhaas HJ, Küsters B, Pijnenburg YA, Ghidoni R, Verbeek MM. Tau rather than TDP-43 proteins are potential cerebrospinal fluid biomarkers for frontotemporal lobar degeneration subtypes:a pilot study[J]. J Alzheimers Dis, 2017, 55:585-595.
[10] Goossens J, Bjerke M, Van Mossevelde S, Van den Bossche T, Goeman J, De Vil B, Sieben A, Martin JJ, Cras P, De Deyn PP, Van Broeckhoven C, van der Zee J, Engelborghs S. Diagnostic value of cerebrospinal fluid tau, neurofilament, and progranulin in definite frontotemporal lobar degeneration[J]. Alzheimers Res Ther, 2018, 10:31.
[11] Goldman JS, Farmer JM, Wood EM, Johnson JK, Boxer A, Neuhaus J, Lomen-Hoerth C, Wilhelmsen KC, Lee VM, Grossman M, Miller BL. Comparison of family histories in FTLD subtypes and related tauopathies[J]. Neurology, 2005, 65:1817-1819.
[12] Knibb JA, Xuereb JH, Patterson K, Hodges JR. Clinical and pathological characterization of progressive aphasia[J]. Ann Neurol, 2006, 59:156-165.
[13] Rajput A, Dickson DW, Robinson CA, Ross OA, Dächsel JC, Lincoln SJ, Cobb SA, Rajput ML, Farrer MJ. Parkinsonism, LRRK2 G2019S, and tau neuropathology[J]. Neurology, 2006, 67:1506-1508.
[14] Guerreiro PS, Gerhardt E, Lopes da Fonseca T, Bähr M, Outeiro TF, Eckermann K. LRRK2 promotes tau accumulation, aggregation and release[J]. Mol Neurobiol, 2016, 53:3124-3135.
[15] Miklossy J, Qing H, Guo JP, Yu S, Wszolek ZK, Calne D, McGeer EG, McGeer PL. LRRK2 and chronic inflammation are linked to pallido-ponto-nigral degeneration caused by the N279K tau mutation[J]. Acta Neuropathol, 2007, 114:243-254.
[16] Nguyen APT, Daniel G, Valdés P, Islam MS, Schneider BL, Moore DJ. G2019S LRRK2 enhances the neuronal transmission of tau in the mouse brain[J]. Hum Mol Genet, 2018, 27:120-134.
[17] Bailey RM, Covy JP, Melrose HL, Rousseau L, Watkinson R, Knight J, Miles S, Farrer MJ, Dickson DW, Giasson BI, Lewis J. LRRK2 phosphorylates novel tau epitopes and promotes tauopathy[J]. Acta Neuropathol, 2013, 126:809-827.
[18] Sanchez-Contreras M, Heckman MG, Tacik P, Diehl N, Brown PH, Soto-Ortolaza AI, Christopher EA, Walton RL, Ross OA, Golbe LI, Graff-Radford N, Wszolek ZK, Dickson DW, Rademakers R. Study of LRRK2 variation in tauopathy:progressive supranuclear palsy and corticobasal degeneration[J]. Mov Disord, 2017, 32:115-123.
[19] Broce I, Karch CM, Wen N, Fan CC, Wang Y, Tan CH, Kouri N, Ross OA, Höglinger GU, Muller U, Hardy J, Momeni P, Hess CP, Dillon WP, Miller ZA, Bonham LW, Rabinovici GD, Rosen HJ, Schellenberg GD, Franke A, Karlsen TH, Veldink JH, Ferrari R, Yokoyama JS, Miller BL, Andreassen OA, Dale AM, Desikan RS, Sugrue LP. Immune-related genetic enrichment in frontotemporal dementia:an analysis of genome-wide association studies[J]. PLoS Med, 2018, 15:e1002487.
[20] Dächsel JC, Ross OA, Mata IF, Kachergus J, Toft M, Cannon A, Baker M, Adamson J, Hutton M, Dickson DW, Farrer MJ. LRRK2 G2019S substitution in frontotemporal lobar degeneration with ubiquitin-immunoreactive neuronal inclusions[J]. Acta Neuropathol, 2007, 113:601-606.
[21] Wider C, Dickson DW, Wszolek ZK. Leucine-rich repeat kinase 2 gene-associated disease:redefining genotype-phenotype correlation[J]. Neurodegener Dis, 2010, 7:175-179. |