[1]Okabe K, Yaku K, Tobe K, et al. Implications of altered NAD metabolism in metabolic disorders[J]. J Biomed Sci, 2019,26: 34. doi:10.1186/s12929-019-0527-8. [2]Xie N, Zhang L, Gao W, et al. NAD+ metabolism: pathophysiologic mechanisms and therapeutic potential[J]. Signal Transduct Target Ther, 2020,5:227. doi:10.1038/s41392-020-00311-7. [3]Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-boosting molecules: the in vivo evidence[J]. Cell Metab, 2018,27:529-547. [4]Hassinen IE. Signaling and regulation through the NAD+ and NADP+ networks[J]. Antioxid Redox Signal, 2019, 30: 857-874. [5]Cohen MS. Interplay between compartmentalized NAD+ synthesis and consumption: a focus on the PARP family[J]. Genes Dev, 2020, 34:254-262. [6]Cantó C, Menzies KJ, Auwerx J. NAD+ metabolism and the control of energy homeostasis: abalancing act between mitochondria and the nucleus[J]. Cell Metab, 2015, 22:31-53. [7]Kane AE, Sinclair DA. Sirtuins and NAD+ in the development and treatment of metabolic and cardiovascular diseases[J]. Circ Res, 2018,123:868-885. [8]陶鹏宇,张悦.SIRT1在糖尿病肾病进展中的作用[J].基础医学与临床,2019,39:439-443. [9]Xiao W, Wang RS, Handy DE, et al. NAD(H) and NADP(H) redox couples and cellular energy metabolism[J]. Antioxid Redox Signal, 2018,28:251-272. [10]Katsyuba E, Auwerx J. Modulating NAD+ metabolism, from bench to bedside[J]. EMBO J, 2017, 36:2670-2683. [11]Strømland Ø, Niere M, Nikiforov AA, et al. Keeping the balance in NAD metabolism[J]. Biochem Soc Trans, 2019, 47:119-130. [12]Hämäläinen RH, Ahlqvist KJ, Ellonen P, et al. mtDNA mutagenesis disrupts pluripotent stem cell function by altering redox signaling[J]. Cell Rep, 2015, 11:1614-1624. [13]Hong W, Mo F, Zhang Z, et al. Nicotinamide mononucleotide: a promising molecule for therapy of diverse diseases by targeting NAD+ metabolism[J]. Front Cell Dev Biol, 2020, 8:246. doi: 10.3389/fcell.2020.00246. [14]Kim HJ, Cao W, Oh GS, et al. Augmentation of cellular NAD+ by NQO1 enzymatic action improves age-related hearing impairment[J]. Aging Cell, 2019, 18:e13016. doi:10.1111/acel.13016. [15]Braidy N, Guillemin GJ, Mansour H, et al. Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats[J]. PLoS One, 2011, 6:e19194. doi:10.1371/journal.pone.0019194. [16]Yaku K, Okabe K, Nakagawa T. NAD metabolism: Implications in aging and longevity[J]. Ageing Res Rev, 2018, 47:1-17. [17]Fang EF, Hou Y, Lautrup S, et al. NAD+ augmentation restores mitophagy and limits accelerated aging in werner syndrome[J]. Nat Commun, 2019, 10:5284. doi: 10.1038/s41467-019-13172-8. [18]Brown KD, Maqsood S, Huang JY, et al. Activation of SIRT3 by the NAD precursor nicotinamide riboside protects from noise-induced hearing loss[J]. Cell Metab, 2014, 20:1059-1068. [19]Okur MN, Mao B, Kimura R, et al. Short-term NAD+ supplementation prevents hearing loss in mouse models of cockayne syndrome[J]. NPJ Aging Mech Dis, 2020, 6:1. doi:10.1038/s41514-019-0040-z. [20]Kim HJ, Oh GS, Shen A, et al. Nicotinamide adenine dinucleotide: an essential factor in preserving hearing in cisplatin-induced ototoxicity[J]. Hear Res, 2015, 326:30-39. [21]Wang L, Ding D, Salvi R, et al. Nicotinamide adenine dinucleotide prevents neuroaxonal degeneration induced by manganese in cochlear organotypic cultures[J]. Neurotoxicology, 2014, 40:65-74. [22]Hosseini L, Vafaee MS, Badalzadeh R. Melatonin and nicotinamide mononucleotide attenuate myocardial ische-mia/reperfusion injury via modulation of mitochondrial function and hemodynamic parameters in aged rats[J]. J Cardiovasc Pharmacol Ther, 2020, 25:240-250. [23]Pillai VB, Sundaresan NR, Kim G, et al. Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway[J]. J Biol Chem, 2010, 285:3133-3144. [24]Lee CF, Chavez JD, Garcia-Menendez L, et al. Normalization of NAD+ redox balance as a therapy for heart failure[J]. Circulation, 2016, 134:883-894. [25]Martin AS, Abraham DM, Hershberger KA, et al. Nicotinamide mononucleotide requires SIRT3 to improve cardiac function and bioenergetics in a Friedreich's ataxia cardiomyopathy model[J]. JCI Insight, 2017, 2: 93885. doi:10.1172/jci.insight.93885. [26]Diguet N, Trammell SAJ, Tannous C, et al. Nicotinamide riboside preserves cardiac function in a mouse model of dilated cardiomyopathy[J]. Circulation, 2018, 137:2256-2273. |