[1] Ibrahim L, Stanton C, Nutsch K, et al. Succinylation of a KEAP1 sensor lysine promotes NRF2 activation[J]. Cell Chem Biol, 2023, 30: 1295-1302. [2] Selvan GT, Ashok AK, Rao SJA, et al. Nrf2-regulated antioxidant response ameliorating ionizing radiation-induced damages explored through in vitro and molecular dynamics simulations[J]. J Biomol Struct Dyn, 2023, 41: 8472-8484. [3] Ulasov AV, Rosenkranz AA, Georgiev GP, et al. Nrf2/Keap1/ARE signaling: towards specific regulation[J]. Life Sci, 2022, 291: 120111.doi:10.1016/j.lfs.2021.120111 [4] Murphy MP, Bayir H, Belousov V, et al. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo[J]. Nat Metab, 2022, 4: 651-662. [5] Suzuki T, Takahashi J, Yamamoto M. Molecular Basis of the KEAP1-NRF2 Signaling Pathway[J]. Mol Cells, 2023, 46: 133-141. [6] Li N, Wang J, Zang X, et al. H(2)S probe CPC inhibits autophagy and promotes apoptosis by inhibiting glutathionylation of Keap1 at Cys434[J]. Apoptosis, 2021, 26: 111-131. [7] Gambhir L, Checker R, Thoh M, et al. 1,4-Naphthoquinone, a pro-oxidant, suppresses immune responses via KEAP-1 glutathionylation[J]. Biochem Pharmacol, 2014, 88: 95-105. [8] Wang L, Qu G, Gao Y, et al. A small molecule targeting glutathione activates Nrf2 and inhibits cancer cell growth through promoting Keap-1 S-glutathionylation and inducing apoptosis[J]. RSC Adv, 2018, 8: 792-804. [9] Song H, Xu T, Feng X, et al. Itaconate prevents abdominal aortic aneurysm formation through inhibiting inflammation via activation of Nrf2[J]. EBioMedicine, 2020, 57: 102832. doi:10.1016/j.ebiom.2020.102832. [10] Małecki JM, Davydova E, Falnes PØ. Protein methylation in mitochondria[J]. J Biol Chem, 2022, 298: 101791. doi:10.1016/j.jbc.2022.101791. [11] Wang Z, Li R, Hou N, et al. PRMT5 reduces immunotherapy efficacy in triple-negative breast cancer by methylating KEAP1 and inhibiting ferroptosis[J]. J Immunother Cancer, 2023, 11. doi:10.1136/jitc-2023-006890. [12] Yang H, Du Y, Fei X, et al. SUMOylation of the ubiquitin ligase component KEAP1 at K39 upregulates NRF2 and its target function in lung cancer cell proliferation[J]. J Biol Chem, 2023, 299: 105215. doi:10.1016/j.jbc.2023.105215. [13] Adam J, Hatipoglu E, O′Flaherty L, et al. Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling[J]. Cancer Cell, 2011, 20: 524-537. [14] Karuppagounder SS, Wang H, Kelly T, et al. The c-Abl inhibitor IkT-148009 suppresses neurodegeneration in mouse models of heritable and sporadic Parkinson′s disease[J]. Sci Transl Med, 2023, 15: eabp9352. doi:10.1126/scitranslmed.abp9352. [15] Carvalho AN, Marques C, Guedes RC, et al. S-Glutathionylation of Keap1: a new role for glutathione S-transferase pi in neuronal protection[Z]. FEBS Lett, 2016: 590, 1455-1466. [16] Zhang X, Feng N, Liu Y, et al. Neuroinflammation inhibition by small-molecule targeting USP7 noncatalytic domain for neurodegenerative disease therapy[J]. Sci Adv, 2022, 8: eabo789. doi:10.1126/sciadv.abo0789. [17] Mills EL, Ryan DG, Prag HA, et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1[J]. Nature, 2018, 556: 113-117. [18] Song Y, Xu Z, Zhong Q, et al. Sulfur signaling pathway in cardiovascular disease[J]. Front Pharmacol, 2023, 14: 1303465.doi:10.3389/fphar.2023.1303465. [19] Xie L, Gu Y, Wen M, et al. Hydrogen sulfide induces Keap1 S-sulfhydration and suppresses diabetes-accele-rated atherosclerosis via Nrf2 activation[J]. Diabetes, 2016, 65: 3171-3184. [20] 乔钰惠,孟增慧,郭丽君,等. 心肌缺血再灌注损伤的机制和治疗[J]. 基础医学与临床, 2015, 35: 1666-1671. [21] Wang D, Yin Y, Wang S, et al. FGF1(ΔHBS) prevents diabetic cardiomyopathy by maintaining mitochondrial homeostasis and reducing oxidative stress via AMPK/Nur77 suppression[J]. Signal Transduct Target Ther, 2021, 6: 133. doi:10.1038/s41392-021-00542-2. [22] Xiao C, Xia M, Wang J, et al. Luteolin attenuates cardiac ischemia/reperfusion injury in diabetic rats by modulating Nrf2 antioxidative function[J]. Oxid Med Cell Longev, 2019, 2019: 2719252. doi:10.1155/2019/2719252. [23] Chen S, Chen L, Jiang H. Prognosis and risk factors of chronic kidney disease progression in patients with diabetic kidney disease and non-diabetic kidney disease: a prospective cohort CKD-ROUTE study[J]. Ren Fail, 2022, 44: 1309-1318. [24] Xu T, Du Y, Sheng Z, et al. OGT-Mediated KEAP1 glycosylation accelerates NRF2 degradation leading to high phosphate-induced vascular calcification in chronic kidney disease[J]. Front Physiol, 2020, 11: 1092. doi:10.3389/fphys.2024.1505634. [25] Wan H, Cai Y, Xiao L, et al. JFD, a novel natural inhibitor of Keap1 alkylation, suppresses intracellular mycobacterium tuberculosis growth through Keap1/Nrf2/SOD2-mediated ROS accumulation[J]. Oxid Med Cell Longev, 2023, 2023: 6726654. doi:10.1155/2023/6726654. |