[1] |
Uzquiano A, Arlotta P. Brain organoids: the quest to decipher human-specific features of brain development[J]. Curr Opin Genet Dev, 2022, 75: 101955. doi: 10.1016/j.gde.2022.101955.
|
[2] |
Rios AC, Clevers H. Imaging organoids: a bright future ahead[J]. Nat Methods, 2018, 15: 24-26. doi: 10.1038/nmeth.4537.
|
[3] |
Low LA, Mummery C, Berridge BR, et al. Organs-on-chips: into the next decade[J]. Nat Rev Drug Discov, 2021, 20: 345-361. doi: 10.1038/s41573-020-0079-3.
|
[4] |
Lancaster MA, Renner M, Martin CA, et al. Cerebral organoids model human brain development and microcephaly[J]. Nature, 2013, 501: 373-379. doi: 10.1038/nature12517.
|
[5] |
Xiang Y, Cakir B, Park IH. Deconstructing and reconstructing the human brain with regionally specified brain organoids[J]. Semin Cell Dev Biol, 2021, 111: 40-51. doi: 10.1016/j.semcdb.2020.05.023.
|
[6] |
Miura Y, Li MY, Birey F, et al. Generation of human striatal organoids and cortico-striatal assembloids from human pluripotent stem cells[J]. Nat Biotechnol, 2020, 38: 1421-1430. doi: 10.1038/s41587-020-00763-w.
|
[7] |
Kiral FR, Cakir B, Tanaka Y, et al. Generation of ventralized human thalamic organoids with thalamic reticular nucleus[J]. Cell Stem Cell, 2023, 30: 677-688 e675. doi: 10.1016/j.stem.2023.03.007.
|
[8] |
Jo J, Xiao Y, Sun AX, et al. Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons[J]. Cell Stem Cell, 2016, 19: 248-257. doi: 10.1016/j.stem.2016.07.005.
|
[9] |
Xiang Y, Tanaka Y, Patterson B, et al. Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration[J]. Cell Stem Cell, 2017, 21: 383-398 e387. doi: 10.1016/j.stem.2017.07.007.
|
[10] |
Birey F, Andersen J, Makinson CD, et al. Assembly of functionally integrated human forebrain spheroids[J]. Nature, 2017, 545: 54-59. doi: 10.1038/nature22330.
|
[11] |
Park DS, Kozaki T, Tiwari SK, et al. iPS-cell-derived microglia promote brain organoid maturation via chole-sterol transfer[J]. Nature, 2023, 623: 397-405. doi: 10.1038/s41586-023-06713-1.
|
[12] |
Chen X, Sun G, Tian E, et al. Modeling sporadic Alzheimer′s disease in human brain organoids under serum exposure[J]. Adv Sci (Weinh), 2021, 8: e2101462. doi: 10.1002/advs.202101462.
|
[13] |
Liu H, Mei F, Ye R, et al. APOE3ch alleviates Abeta and tau pathology and neurodegeneration in the human APP(NL-G-F) cerebral organoid model of Alzheimer′s disease[J]. Cell Res, 2024, 34: 451-454. doi: 10.1038/s41422-024-00957-w.
|
[14] |
Fetit R, Barbato MI, Theil T, et al. 16p11.2 deletion accelerates subpallial maturation and increases variability in human iPSC-derived ventral telencephalic organoids[J]. Development, 2023, 150: dev201227. doi: 10.1242/dev.201227.
|
[15] |
Lai JD, Berlind JE, Fricklas G, et al. KCNJ2 inhibition mitigates mechanical injury in a human brain organoid model of traumatic brain injury[J]. Cell Stem Cell, 2024, 31: 519-536 e518. doi: 10.1016/j.stem.2024.03.004.
|
[16] |
Wang SN, Wang Z, Wang XY, et al. Humanized cerebral organoids-based ischemic stroke model for discovering of potential anti-stroke agents[J]. Acta Pharmacol Sin, 2023, 44: 513-523. doi: 10.1038/s41401-022-00986-4.
|
[17] |
Hermans E, Hulleman E. Patient-derived orthotopic xenograft models of pediatric brain tumors: in a mature phase or still in its infancy?[J]. Front Oncol, 2019, 9: 1418. doi: 10.3389/fonc.2019.01418.
|
[18] |
Pine AR, Cirigliano SM, Nicholson JG, et al. Tumor microenvironment is critical for the maintenance of cellular states found in primary glioblastomas[J]. Cancer Discov, 2020, 10: 964-979. doi: 10.1158/2159-8290.CD-20-0057.
|
[19] |
Wadman M. FDA no longer has to require animal testing for new drugs[J]. Science, 2023, 379: 127-128. doi: 10.1126/science.adg6276.
|
[20] |
Marx U, Akabane T, Andersson TB, et al. Biology-inspired microphysiological systems to advance patient benefit and animal welfare in drug development[J]. ALTEX, 2020, 37: 365-394. doi: 10.14573/altex.2001241.
|
[21] |
Mastrangeli M, Millet S, Orchid Partners T, et al. Organ-on-chip in development: towards a roadmap for organs-on-chip[J]. ALTEX, 2019, 36: 650-668. doi: 10.14573/altex.1908271.
|
[22] |
Park JC, Jang SY, Lee D, et al. A logical network-based drug-screening platform for Alzheimer′s disease represent-ing pathological features of human brain organoids[J]. Nat Commun, 2021, 12: 280. doi: 10.1038/s41467-020-20440-5.
|
[23] |
Samarasinghe RA, Miranda OA, Buth JE, et al. Identification of neural oscillations and epileptiform changes in human brain organoids[J]. Nat Neurosci, 2021, 24: 1488-1500. doi: 10.1038/s41593-021-00906-5.
|
[24] |
Jacob F, Salinas RD, Zhang DY, et al. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity[J]. Cell, 2020, 180: 188-204 e122. doi: 10.1016/j.cell.2019.11.036.
|
[25] |
Loong HH, Wong AM, Chan DT, et al. Patient-derived tumor organoid predicts drugs response in glioblastoma: a step forward in personalized cancer therapy?[J]. J Clin Neurosci, 2020, 78: 400-402. doi: 10.1016/j.jocn.2020.04.107.
|
[26] |
Wen J, Liu F, Cheng Q, et al. Applications of organoid technology to brain tumors[J]. CNS Neurosci Ther, 2023, 29: 2725-2743. doi: 10.1111/cns.14272.
|
[27] |
Mansour AA, Goncalves JT, Bloyd CW, et al. An in vivo model of functional and vascularized human brain organoids[J]. Nat Biotechnol, 2018, 36: 432-441. doi: 10.1038/nbt.4127.
|
[28] |
Revah O, Gore F, Kelley KW, et al. Maturation and circuit integration of transplanted human cortical organoids[J]. Nature, 2022, 610: 319-326. doi: 10.1038/s41586-022-05277-w.
|
[29] |
Cao SY, Yang D, Huang ZQ, et al. Cerebral organoids transplantation repairs infarcted cortex and restores impaired function after stroke[J]. NPJ Regen Med, 2023, 8: 27. doi: 10.1038/s41536-023-00301-7.
|
[30] |
Trapecar M, Wogram E, Svoboda D, et al. Human physiomimetic model integrating microphysiological systems of the gut, liver, and brain for studies of neurodegenerative diseases[J]. Sci Adv, 2021, 7: eabd1707. doi: 10.1126/sciadv.abd1707.
|