[1]Benjamin EJ, Muntner P, Alonso A, et al. Heart disease and stroke statistics-2019 update: a report from the american heart association[J]. Circulation, 2019, 139: e56-e528. [2]Dong Y, Xu S, Liu J, et al. Non-coding RNA-linked epigenetic regulation in cardiac hypertrophy[J]. Int J Biol Sci, 2018, 149: 1133-1141. [3]Xiao D, Dasgupta C, Chen M, et al. Inhibition of DNA methylation reverses norepinephrine-induced cardiac hypertrophy in rats[J]. Cardiovasc Res, 2014, 1013: 373-382. [4]Stenzig J, Schneeberger Y, Loser A, et al. Pharmacologi-cal inhibition of DNA methylation attenuates pressure overload-induced cardiac hypertrophy in rats[J]. J Mol Cell Cardiol, 2018, 120: 53-63. [5]陈美婷, 张弋, 江慧琳, 等. 5-氮杂胞苷抑制血管紧张素Ⅱ诱导心肌肥大的作用研究[J].中华急诊医学杂志,2018, 273: 301-306. [6]Liu L, He X, Zhao M, et al. Regulation of DNA methylation and 2-OG/TET signaling by choline alleviated cardiac hypertrophy in spontaneously hypertensive rats[J]. J Mol Cell Cardiol, 2019, 128: 26-37. [7]Ooi JY, Tuano NK, Rafehi H, et al. Hdac inhibition attenuates cardiac hypertrophy by acetylation and deacetylation of target genes[J]. Epigenetics, 2015, 105: 418-430. [8]Kee HJ, Sohn IS, Nam KI, et al. Inhibition of histone deacetylation blocks cardiac hypertrophy induced by angiotensin Ⅱ infusion and aortic banding[J]. Circulation, 2006, 1131: 51-59. [9]Ferguson BS, Harrison BC, Jeong MY, et al. Signal-dependent repression of DUSP5 by class Ⅰ HDACs controls nuclear ERK activity and cardiomyocyte hypertrophy[J]. Proc Natl Acad Sci U S A, 2013, 11024: 9806-9811. [10]Lee E, Song MJ, Lee HA, et al. Histone deacetylase inhibitor, cg200745, attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats[J]. Korean J Physiol Pharmacol, 2016, 205: 477-485. [11]Lee E, Lee HA, Kim M, et al. Upregulation of C/EBPB and TSC2 by an HDAC inhibitor cg200745 protects heart from DOCA-induced hypertrophy[J]. Clin Exp Pharmacol Physiol, 2019, 463: 226-236. [12]Dorn LE, Tual-Chalot S, Stellos K, et al. RNA epigenetics and cardiovascular diseases[J]. J Mol Cell Cardiol, 2019, 129: 272-280. [13]Paramasivam A, Vijayashree Priyadharsini J, Raghunandhakumar S. N6-adenosine methylation (m6A): a promising new molecular target in hypertension and cardiovascular diseases[J]. Hypertens Res, 2020, 432: 153-154. [14]Ni H, Li W, Zhuge Y, et al. Inhibition of circhipk3 prevents angiotensin Ⅱ-induced cardiac fibrosis by sponging mIR-29b-3p[J]. Int J Cardiol, 2019, 292: 188-196. [15]Dorn LE, Lasman L, Chen J, et al. The n(6)-methyladenosine mRNA methylase mettl3 controls cardiac homeo-stasis and hypertrophy[J]. Circulation, 2019, 1394: 533-545. [16]Gao XQ, Zhang YH, Liu F, et al. The PiRNA chapir regulates cardiac hypertrophy by controlling mettl3-dependent n(6)-methyladenosine methylation of parp10 mRNA[J]. Nat Cell Biol, 2020, 2211: 1319-1331. [17]Sun T, Dong YH, Du W, et al. The role of microRNAs in myocardial infarction: from molecular mechanism to clinical application[J]. Int J Mol Sci, 2017,18:745.doi:10.3390/ijms18040745. [18]Xu X, Su YL, Shi JY, et al. MicroRNA-17-5p promotes cardiac hypertrophy by targeting mfn2 to inhibit autophagy[J]. Cardiovasc Toxicol, 2021, 219: 759-771. [19]Ding YQ, Zhang YH, Lu J, et al. MicroRNA-214 contributes to ang II-induced cardiac hypertrophy by targeting sirt3 to provoke mitochondrial malfunction[J]. Acta Pharmacol Sin, 2021, 429: 1422-1436. [20]Zeng J, Wang L, Zhao J, et al. miR-100-5p regulates cardiac hypertrophy through activation of autophagy by targeting mtor[J]. Hum Cell, 2021, 345: 1388-1397. [21]Qi J, Luo X, Ma Z, et al. Downregulation of miR-26b-5p, miR-204-5p, and miR-497-3p expression facilitates exercise-induced physiological cardiac hypertrophy by augmenting autophagy in rats[J]. Front Genet, 2020, 11: 78.doi: 10.3389/fgene.2020.00078. [22]Thum T, Condorelli G. Long noncoding RNAs and mic-roRNAs in cardiovascular pathophysiology[J]. Circ Res, 2015, 1164: 751-762. [23]Zou X, Wang J, Tang L, et al. LncRNA tug1 contributes to cardiac hypertrophy via regulating miR-29b-3p[J]. In Vitro Cell Dev Biol Anim, 2019, 557: 482-490. [24]Wo Y, Guo J, Li P, et al. Long non-coding RNA chrf facilitates cardiac hypertrophy through regulating Akt3 via miR-93[J]. Cardiovasc Pathol, 2018, 35: 29-36. [25]Xu Y, Luo Y, Liang C, et al. LncRNA-mhrt regulates cardiac hypertrophy by modulating the miR-145a-5p/klf4/myocardin axis[J]. J Mol Cell Cardiol, 2020, 139: 47-61. [26]Song C, Qi H, Liu Y, et al. Inhibition of lncRNA gm15834 attenuates autophagy-mediated myocardial hypertrophy via the miR-30b-3p/ulk1 axis in mice[J]. Mol Ther, 2021, 293: 1120-1137. [27]Wang K, Long B, Liu F, et al. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223[J]. Eur Heart J, 2016, 3733: 2602-2611. [28]Li H, Xu JD, Fang XH, et al. Circular RNA circRNA_000203 aggravates cardiac hypertrophy via suppressing miR-26b-5p and miR-140-3p binding to gata4[J]. Cardiovasc Res, 2020, 1167: 1323-1334. [29]Xu X, Wang J, Wang X. Silencing of circHIPK3 inhibits pressure overload-induced cardiac hypertrophy and dysfunction by sponging miR-185-3p[J]. Drug Des Devel Ther, 2020, 14: 5699-5710. [30]Lim TB, Aliwarga E, Luu TDA, et al. Targeting the highly abundant circular RNA circSLC8A1 in cardio-myocytes attenuates pressure overload induced hypertrophy[J]. Cardiovasc Res, 2019, 11514: 1998-2007. |