[1] Calabrese VP. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030[J]. Neurology, 2007, 69:223-224. [2] Larson DN, Schneider RB, Simuni T. A new era:the growth of video-based visits for remote management of persons with Parkinson's disease[J]. J Parkinsons Dis, 2021, 11(s1):S27-34. [3] Servant M, van Wouwe N, Wylie SA, Logan GD. A model-based quantification of action control deficits in Parkinson's disease[J]. Neuropsychologia, 2018, 111:26-35. [4] Taylor Tavares AL, Jefferis GS, Koop M, Hill BC, Hastie T, Heit G, Bronte-Stewart HM. Quantitative measurements of alternating finger tapping in Parkinson's disease correlate with UPDRS motor disability and reveal the improvement in fine motor control from medication and deep brain stimulation[J]. Mov Disord, 2005, 20:1286-1298. [5] Salarian A, Horak FB, Zampieri C, Carlson-Kuhta P, Nutt JG, Aminian K. iTUG, a sensitive and reliable measure of mobility[J]. IEEE Trans Neural Syst Rehabil Eng, 2010, 18:303-310. [6] Godinho C, Domingos J, Cunha G, Santos AT, Fernandes RM, Abreu D, Gonçalves N, Matthews H, Isaacs T, Duffen J, Al-Jawad A, Larsen F, Serrano A, Weber P, Thoms A, Sollinger S, Graessner H, Maetzler W, Ferreira JJ. Erratum to:a systematic review of the characteristics and validity of monitoring technologies to assess Parkinson's disease[J]. J Neuroeng Rehabil, 2016, 13:71. [7] Tosserams A, Keijsers N, Kapelle W, Kessels RPC, Weerdesteyn V, Bloem BR, Nonnekes J. Evaluation of compensation strategies for gait impairment in patients with Parkinson disease[J]. Neurology, 2022, 99:e2253-2263. [8] Jakob V, Küderle A, Kluge F, Klucken J, Eskofier BM, Winkler J, Winterholler M, Gassner H. Validation of a sensor-based gait analysis system with a gold-standard motion capture system in patients with Parkinson's disease[J]. Sensors (Basel), 2021, 21:7680. [9] Yin Z, Geraedts VJ, Wang Z, Contarino MF, Dibeklioglu H, van Gemert J. Assessment of Parkinson's disease severity from videos using deep architectures[J]. IEEE J Biomed Health Inform, 2022, 26:1164-1176. [10] Zhu S, Wu Z, Wang Y, Jiang Y, Gu R, Zhong M, Jiang X, Shen B, Zhu J, Yan J, Pan Y, Zhang L. Gait analysis with wearables is a potential progression marker in Parkinson's disease[J]. Brain Sci, 2022, 12:1213. [11] Zhang X, Fan W, Yu H, Li L, Chen Z, Guan Q. Single-and dual-task gait performance and their diagnostic value in early-stage Parkinson's disease[J]. Front Neurol, 2022, 13:974985. [12] Liu P, Yu N, Yang Y, Yu Y, Sun X, Yu H, Han J, Wu J. Quantitative assessment of gait characteristics in patients with Parkinson's disease using 2D video[J]. Parkinsonism Relat Disord, 2022, 101:49-56. [13] Vasquez-Correa JC, Arias-Vergara T, Orozco-Arroyave JR, Eskofier B, Klucken J, Noth E. Multimodal assessment of Parkinson's disease:a deep learning approach[J]. IEEE J Biomed Health Inform, 2019, 23:1618-1630. [14] Ramaker C, Marinus J, Stiggelbout AM, Van Hilten BJ. Systematic evaluation of rating scales for impairment and disability in Parkinson's disease[J]. Mov Disord, 2002, 17:867-876. [15] Lopes TJA, Ferrari D, Ioannidis J, Simic M, Mícolis de Azevedo F, Pappas E. Reliability and validity of frontal plane kinematics of the trunk and lower extremity measured with 2-dimensional cameras during athletic tasks:a systematic review with meta-analysis[J]. J Orthop Sports Phys Ther, 2018, 48:812-822. [16] Michelini A, Eshraghi A, Andrysek J. Two-dimensional video gait analysis:a systematic review of reliability, validity, and best practice considerations[J]. Prosthet Orthot Int, 2020, 44:245-262. [17] Shin JH, Yu R, Ong JN, Lee CY, Jeon SH, Park H, Kim HJ, Lee J, Jeon B. Quantitative gait analysis using a pose-estimation algorithm with a single 2D-video of Parkinson's disease patients[J]. J Parkinsons Dis, 2021, 11:1271-1283. [18] Fabbri M, Pongmala C, Artusi CA, Imbalzano G, Romagnolo A, Lopiano L, Zibetti M. Video analysis of long-term effects of levodopa-carbidopa intestinal gel on gait and posture in advanced Parkinson's disease[J]. Neurol Sci, 2020, 41:1927-1930. [19] Kreuzer D, Munz M. Deep convolutional and LSTM networks on multi-channel time series data for gait phase recognition[J]. Sensors (Basel), 2021, 21:789. [20] Cao X, Xue Y, Chen J, Chen X, Ma Y, Hu C, Ma H, Ma H. Video based shuffling step detection for parkinsonian patients using 3D convolution[J]. IEEE Trans Neural Syst Rehabil Eng, 2021, 29:641-649. [21] Stricker M, Hinde D, Rolland A, Salzman N, Watson A, Almonroeder TG. Quantifying step length using two-dimensional video in individuals with Parkinson's disease[J]. Physiother Theory Pract, 2021, 37:252-255. [22] Sato K, Nagashima Y, Mano T, Iwata A, Toda T. Quantifying normal and parkinsonian gait features from home movies:practical application of a deep learning-based 2D pose estimator[J]. PLoS One, 2019, 14:e0223549. [23] Ippisch R, Jelusic A, Bertram J, Schniepp R, Wuehr M. mVEGAS:mobile smartphone-based spatiotemporal gait analysis in healthy and ataxic gait disorders[J]. Gait Posture, 2022, 97:80-85. [24] Gilat M. How to annotate freezing of gait from video:a standardized method using open-source software[J]. J Parkinsons Dis, 2019, 9:821-824. [25] Sepas-Moghaddam A, Etemad A. Deep gait recognition:a survey[J]. IEEE Trans Pattern Anal Mach Intell, 2022.[Epub ahead of print] [26] Guo R, Shao XX, Zhang CC, Qian XH. Multi-scale sparse graph convolutional network for the assessment of parkinsonian gait[J]. IEEE Trans Multi, 2022, 24:1583-1594. [27] Cho CW, Chao WH, Lin SH, Chen YY. A vision-based analysis system for gait recognition in patients with Parkinson's disease[J]. Exp Syst App, 2009, 36:7033-7039. [28] Albuquerque P, Machado JP, Verlekar TT, Correia PL, Soares LD. Remote gait type classification system using markerless 2D video[J]. Diagnostics (Basel), 2021, 11:1824. [29] Sabo A, Mehdizadeh S, Iaboni A, Taati B. Estimating parkinsonism severity in natural gait videos of older adults with dementia[J]. IEEE J Biomed Health Inform, 2022, 26:2288-2298. [30] Simonyan K, Zisserman A. Two-stream convolutional networks for action recognition in videos[J]. Adv Neural Inform Proc Syst, 2014. [31] Sun RF, Wang ZY, Martens KE, Lewis S. Convolutional 3D attention network for video based freezing of gait recognition[C]. 2018 Digital Image Computing:Techniques and Applications (DICTA), Canberra, Australia, 2018. New York:IEEE, 2018:1-7. [32] Vignoud G, Desjardins C, Salardaine Q, Mongin M, Garcin B, Venance L, Degos B. Video-based automated assessment of movement parameters consistent with MDS-UPDRS Ⅲ in Parkinson's disease[J]. J Parkinsons Dis, 2022, 12:2211-2222. [33] Park KW, Lee EJ, Lee JS, Jeong J, Choi N, Jo S, Jung M, Do JY, Kang DW, Lee JG, Chung SJ. Machine learning-based automatic rating for cardinal symptoms of Parkinson disease[J]. Neurology, 2021, 96:e1761-1769. [34] Williams S, Fang H, Relton SD, Wong DC, Alam T, Alty JE. Accuracy of smartphone video for contactless measurement of hand tremor frequency[J]. Mov Disord Clin Pract, 2020, 8:69-75. [35] Fois AF, Mahant N, Vucic S, Fung VSC. Measuring tremor:a comparison of automated video analysis, neurophysiology, and clinical rating[J]. Mov Disord, 2021, 36:2962-2963. [36] Novotny M, Tykalova T, Ruzickova H, Ruzicka E, Dusek P, Rusz J. Automated video-based assessment of facial bradykinesia in de-novo Parkinson's disease[J]. NPJ Digit Med, 2022, 5:98. [37] Lu M, Poston K, Pfefferbaum A, Sullivan EV, Fei-Fei L, Pohl KM, Niebles JC, Adeli E. Vision-based estimation of MDS-UPDRS gait scores for assessing Parkinson's disease motor severity[J]. Med Image Comput Assist Interv, 2020, 12263:637-647. [38] Wang X, Garg S, Tran SN, Bai Q, Alty J. Hand tremor detection in videos with cluttered background using neural network based approaches[J]. Health Inf Sci Syst, 2021, 9:30. [39] Li T, Chen J, Hu C, Ma Y, Wu Z, Wan W, Huang Y, Jia F, Gong C, Wan S, Li L. Automatic timed up-and-go sub-task segmentation for Parkinson's disease patients using video-based activity classification[J]. IEEE Trans Neural Syst Rehabil Eng, 2018, 26:2189-2199. [40] Tarolli C, Andrzejewski K, Bull M, Goldenthal S, O'Brien M, Simuni T, Zimmerman G, Biglan K, Dorsey ER. Virtual research visits in individuals with Parkinson disease enrolled in a clinical trial:REACT-PD study interim analysis (P4.005)[J]. Mov Disord, 2017, 32(suppl 2):1378. [41] Sibley KG, Girges C, Hoque E, Foltynie T. Video-based analyses of Parkinson's disease severity:a brief review[J]. J Parkinsons Dis, 2021, 11(s1):S83-93. [42] Omberg L, Chaibub Neto E, Perumal TM, Pratap A, Tediarjo A, Adams J, Bloem BR, Bot BM, Elson M, Goldman SM, Kellen MR, Kieburtz K, Klein A, Little MA, Schneider R, Suver C, Tarolli C, Tanner CM, Trister AD, Wilbanks J, Dorsey ER, Mangravite LM. Remote smartphone monitoring of Parkinson's disease and individual response to therapy[J]. Nat Biotechnol, 2022, 40:480-487. [43] Xu X, Zeng Z, Qi Y, Ren K, Zhang C, Sun B, Li D. Remote video-based outcome measures of patients with Parkinson's disease after deep brain stimulation using smartphones:a pilot study[J]. Neurosurg Focus, 2021, 51:E2. |