[1] Lang AE, Espay AJ. Disease modification in Parkinson's disease:current approaches, challenges, and future considerations[J]. Mov Disord, 2018, 33:660-677.
[2] Vijiaratnam N, Simuni T, Bandmann O, Morris HR, Foltynie T. Progress towards therapies for disease modification in Parkinson's disease[J]. Lancet Neurol, 2021, 20:559-572.
[3] Henderson MX, Trojanowski JQ, Lee VM. alpha-Synuclein pathology in Parkinson's disease and related alpha-synucleinopathies[J]. Neurosci Lett, 2019, 709:134316.
[4] Dehay B, Bourdenx M, Gorry P, Przedborski S, Vila M, Hunot S, Singleton A, Olanow CW, Merchant KM, Bezard E, Petsko GA, Meissner WG. Targeting α-synuclein for treatment of Parkinson's disease:mechanistic and therapeutic considerations[J]. Lancet Neurol, 2015, 14:855-866.
[5] Wagner J, Ryazanov S, Leonov A, Levin J, Shi S, Schmidt F, Prix C, Pan-Montojo F, Bertsch U, Mitteregger-Kretzschmar G, Geissen M, Eiden M, Leidel F, Hirschberger T, Deeg AA, Krauth JJ, Zinth W, Tavan P, Pilger J, Zweckstetter M, Frank T, Bähr M, Weishaupt JH, Uhr M, Urlaub H, Teichmann U, Samwer M, Bötzel K, Groschup M, Kretzschmar H, Griesinger C, Giese A. Anle138b:a novel oligomer modulator for disease-modifying therapy of neurodegenerative diseases such as prion and Parkinson's disease[J]. Acta Neuropathol, 2013, 125:795-813.
[6] Wegrzynowicz M, Bar-On D, Calo'L, Anichtchik O, Iovino M, Xia J, Ryazanov S, Leonov A, Giese A, Dalley JW, Griesinger C, Ashery U, Spillantini MG. Depopulation of dense α-synuclein aggregates is associated with rescue of dopamine neuron dysfunction and death in a new Parkinson's disease model[J]. Acta Neuropathol, 2019, 138:575-595.
[7] Price DL, Koike MA, Khan A, Wrasidlo W, Rockenstein E, Masliah E, Bonhaus D. The small molecule alpha-synuclein misfolding inhibitor, NPT200-11, produces multiple benefits in an animal model of Parkinson's disease[J]. Sci Rep, 2018, 8:16165.
[8] Brundin P, Melki R. Prying into the prion hypothesis for Parkinson's disease[J]. J Neurosci, 2017, 37:9808-9818.
[9] Castonguay AM, Gravel C, Lévesque M. Treating Parkinson's disease with antibodies:previous studies and future directions[J]. J Parkinsons Dis, 2021, 11:71-92.
[10] Masliah E, Rockenstein E, Adame A, Alford M, Crews L, Hashimoto M, Seubert P, Lee M, Goldstein J, Chilcote T, Games D, Schenk D. Effects of alpha-synuclein immunization in a mouse model of Parkinson's disease[J]. Neuron, 2005, 46:857-868.
[11] Bae EJ, Lee HJ, Rockenstein E, Ho DH, Park EB, Yang NY, Desplats P, Masliah E, Lee SJ. Antibody-aided clearance of extracellular α-synuclein prevents cell-to-cell aggregate transmission[J]. J Neurosci, 2012, 32:13454-13469.
[12] Antonini A, Bravi D, Sandre M, Bubacco L. Immunization therapies for Parkinson's disease:state of the art and considerations for future clinical trials[J]. Expert Opin Investig Drugs, 2020, 29:685-695.
[13] Jankovic J, Goodman I, Safirstein B, Marmon TK, Schenk DB, Koller M, Zago W, Ness DK, Griffith SG, Grundman M, Soto J, Ostrowitzki S, Boess FG, Martin-Facklam M, Quinn JF, Isaacson SH, Omidvar O, Ellenbogen A, Kinney GG. Safety and tolerability of multiple ascending doses of PRX002/RG7935, an anti-α-synuclein monoclonal antibody, in patients with Parkinson disease:a randomized clinical trial[J]. JAMA Neurol, 2018, 75:1206-1214.
[14] Brys M, Fanning L, Hung S, Ellenbogen A, Penner N, Yang M, Welch M, Koenig E, David E, Fox T, Makh S, Aldred J, Goodman I, Pepinsky B, Liu Y, Graham D, Weihofen A, Cedarbaum JM. Randomized phase Ⅰ clinical trial of anti-α-synuclein antibody BIIB054[J]. Mov Disord, 2019, 34:1154-1163.
[15] Hutchison RM, Evans KC, Fox T, Yang M, Barakos J, Bedell BJ, Cedarbaum JM, Brys M, Siderowf A, Lang AE. Evaluating dopamine transporter imaging as an enrichment biomarker in a phase 2 Parkinson's disease trial[J]. BMC Neurol, 2021, 21:459.
[16] Pagano G, Boess FG, Taylor KI, Ricci B, Mollenhauer B, Poewe W, Boulay A, Anzures-Cabrera J, Vogt A, Marchesi M, Post A, Nikolcheva T, Kinney GG, Zago WM, Ness DK, Svoboda H, Britschgi M, Ostrowitzki S, Simuni T, Marek K, Koller M, Sevigny J, Doody R, Fontoura P, Umbricht D, Bonni A; PASADENA Investigators; Prasinezumab Study Group. A phase Ⅱ study to evaluate the safety and efficacy of prasinezumab in early Parkinson's disease (PASADENA):rationale, design, and baseline data[J]. Front Neurol, 2021, 12:705407.
[17] Djajadikerta A, Keshri S, Pavel M, Prestil R, Ryan L, Rubinsztein DC. Autophagy induction as a therapeutic strategy for neurodegenerative diseases[J]. J Mol Biol, 2020, 432:2799-2821.
[18] Werner MH, Olanow CW. Parkinson's disease modification through Abl kinase inhibition:an opportunity[J]. Mov Disord, 2022, 37:6-15.
[19] Muselli F, Peyron JF, Mary D. Druggable biochemical pathways and potential therapeutic alternatives to target leukemic stem cells and eliminate the residual disease in chronic myeloid leukemia[J]. Int J Mol Sci, 2019, 20:5616.
[20] Hebron ML, Lonskaya I, Moussa CE. Nilotinib reverses loss of dopamine neurons and improves motor behavior via autophagic degradation of α-synuclein in Parkinson's disease models[J]. Hum Mol Genet, 2013, 22:3315-3328.
[21] Pagan F, Hebron M, Valadez EH, Torres-Yaghi Y, Huang X, Mills RR, Wilmarth BM, Howard H, Dunn C, Carlson A, Lawler A, Rogers SL, Falconer RA, Ahn J, Li Z, Moussa C. Nilotinib effects in Parkinson's disease and dementia with lewy bodies[J]. J Parkinsons Dis, 2016, 6:503-517.
[22] Pagan FL, Wilmarth B, Torres-Yaghi Y, Hebron ML, Mulki S, Ferrante D, Matar S, Ahn J, Moussa C. Long-term safety and clinical effects of nilotinib in Parkinson's disease[J]. Mov Disord, 2021, 36:740-749.
[23] Pagan FL, Hebron ML, Wilmarth B, Torres-Yaghi Y, Lawler A, Mundel EE, Yusuf N, Starr NJ, Arellano J, Howard HH, Peyton M, Matar S, Liu X, Fowler AJ, Schwartz SL, Ahn J, Moussa C. Pharmacokinetics and pharmacodynamics of a single dose nilotinib in individuals with Parkinson's disease[J]. Pharmacol Res Perspect, 2019, 7:e00470.
[24] Simuni T, Fiske B, Merchant K, Coffey CS, Klingner E, Caspell-Garcia C, Lafontant DE, Matthews H, Wyse RK, Brundin P, Simon DK, Schwarzschild M, Weiner D, Adams J, Venuto C, Dawson TM, Baker L, Kostrzebski M, Ward T, Rafaloff G; Parkinson Study Group NILO-PD Investigators and Collaborators. Efficacy of nilotinib in patients with moderately advanced Parkinson disease:a randomized clinical trial[J]. JAMA Neurol, 2021, 78:312-320
[25] Senkevich K, Rudakou U, Gan-Or Z. New therapeutic approaches to Parkinson's disease targeting GBA, LRRK2 and Parkin[J]. Neuropharmacology, 2022, 202:108822.
[26] Jeong GR, Lee BD. Pathological functions of LRRK2 in Parkinson's disease[J]. Cells, 2020, 9:2565.
[27] Cresto N, Gardier C, Gubinelli F, Gaillard MC, Liot G, West AB, Brouillet E. The unlikely partnership between LRRK2 and α-synuclein in Parkinson's disease[J]. Eur J Neurosci, 2019, 49:339-363.
[28] Lim SY, Tan AH, Ahmad-Annuar A, Klein C, Tan LCS, Rosales RL, Bhidayasiri R, Wu YR, Shang HF, Evans AH, Pal PK, Hattori N, Tan CT, Jeon B, Tan EK, Lang AE. Parkinson's disease in the Western Pacific region[J]. Lancet Neurol, 2019, 18:865-879.
[29] Chen Y, Gu X, Ou R, Zhang L, Hou Y, Liu K, Cao B, Wei Q, Li C, Song W, Zhao B, Wu Y, Cheng J, Shang H. Evaluating the role of SNCA, LRRK2, and GBA in Chinese patients with early-onset Parkinson's disease[J]. Mov Disord, 2020, 35:2046-2055.
[30] Korecka JA, Thomas R, Hinrich AJ, Moskites AM, Macbain ZK, Hallett PJ, Isacson O, Hastings ML. Splice-switching antisense oligonucleotides reduce LRRK2 kinase activity in human LRRK2 transgenic mice[J]. Mol Ther Nucleic Acids, 2020, 21:623-635.
[31] Zhao HT, John N, Delic V, Ikeda-Lee K, Kim A, Weihofen A, Swayze EE, Kordasiewicz HB, West AB, Volpicelli-Daley LA. LRRK2 antisense oligonucleotides ameliorate alpha-synuclein inclusion formation in a Parkinson's disease mouse model[J]. Mol Ther Nucleic Acids, 2017, 8:508-519.
[32] Do J, McKinney C, Sharma P, Sidransky E. Glucocerebrosidase and its relevance to Parkinson disease[J]. Mol Neurodegener, 2019, 14:36.
[33] Chen YP, Gu XJ, Ou RW, Zhang LY, Hou YB, Liu KC, Cao B, Wei QQ, Song W, Zhao B, Wu Y, Cheng JQ, Shang HF. Genetic analysis of prosaposin, the lysosomal storage disorder gene in Parkinson's disease[J]. Mol Neurobiol, 2021, 58:1583-1592.
[34] McNeill A, Magalhaes J, Shen C, Chau KY, Hughes D, Mehta A, Foltynie T, Cooper JM, Abramov AY, Gegg M, Schapira AH. Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells[J]. Brain, 2014, 137(Pt 5):1481-1495.
[35] Mullin S, Smith L, Lee K, D'Souza G, Woodgate P, Elflein J, Hällqvist J, Toffoli M, Streeter A, Hosking J, Heywood WE, Khengar R, Campbell P, Hehir J, Cable S, Mills K, Zetterberg H, Limousin P, Libri V, Foltynie T, Schapira AHV. Ambroxol for the treatment of patients with Parkinson disease with and without glucocerebrosidase gene mutations:a nonrandomized, noncontrolled trial[J]. JAMA Neurol, 2020, 77:427-434.
[36] Silveira CRA, MacKinley J, Coleman K, Li Z, Finger E, Bartha R, Morrow SA, Wells J, Borrie M, Tirona RG, Rupar CA, Zou G, Hegele RA, Mahuran D, MacDonald P, Jenkins ME, Jog M, Pasternak SH. Ambroxol as a novel disease:modifying treatment for Parkinson's disease dementia:protocol for a single-centre, randomized, double-blind, placebo-controlled trial[J]. BMC Neurol, 2019, 19:20.
[37] Aflaki E, Borger DK, Moaven N, Stubblefield BK, Rogers SA, Patnaik S, Schoenen FJ, Westbroek W, Zheng W, Sullivan P, Fujiwara H, Sidhu R, Khaliq ZM, Lopez GJ, Goldstein DS, Ory DS, Marugan J, Sidransky E. A new glucocerebrosidase chaperone reduces α-synuclein and glycolipid levels in iPSC-derived dopaminergic neurons from patients with gaucher disease and parkinsonism[J]. J Neurosci, 2016, 36:7441-7752.
[38] Rocha EM, Smith GA, Park E, Cao H, Brown E, Hayes MA, Beagan J, McLean JR, Izen SC, Perez-Torres E, Hallett PJ, Isacson O. Glucocerebrosidase gene therapy prevents alpha-synucleinopathy of midbrain dopamine neurons[J]. Neurobiol Dis, 2015, 82:495-503.
[39] Surface M, Balwani M, Waters C, Haimovich A, Gan-Or Z, Marder KS, Hsieh T, Song L, Padmanabhan S, Hsieh F, Merchant KM, Alcalay RN. Plasma glucosylsphingosine in GBA1 mutation carriers with and without Parkinson's disease[J]. Mov Disord, 2021[.Epub ahead of print]
[40] Schneider SA, Hizli B, Alcalay RN. Emerging targeted therapeutics for genetic subtypes of parkinsonism[J]. Neurotherapeutics, 2020, 17:1378-1392.
[41] Sardi SP, Viel C, Clarke J, Treleaven CM, Richards AM, Park H, Olszewski MA, Dodge JC, Marshall J, Makino E, Wang B, Sidman RL, Cheng SH, Shihabuddin LS. Glucosylceramide synthase inhibition alleviates aberrations in synucleinopathy models[J]. Proc Natl Acad Sci USA, 2017, 114:2699-2704.
[42] Judith Peterschmitt M, Gasser T, Isaacson S, Kulisevsky J, Mir P, Simuni T, Wills AM, Guedes LC, Svenningsson P, Waters C. Safety, tolerability and pharmacokinetics of oral venglustat in Parkinson disease patients with a GBA mutation[J]. Mol Genet Metab, 2019, 126.
[43] Trinh D, Israwi AR, Arathoon LR, Gleave JA, Nash JE. The multi-faceted role of mitochondria in the pathology of Parkinson's disease[J]. J Neurochem, 2021, 156:715-752.
[44] Pinto M, Nissanka N, Peralta S, Brambilla R, Diaz F, Moraes CT. Pioglitazone ameliorates the phenotype of a novel Parkinson's disease mouse model by reducing neuroinflammation[J]. Mol Neurodegener, 2016, 11:25.
[45] NINDS Exploratory Trials in Parkinson Disease (NET-PD) FS-ZONE Investigators. Pioglitazone in early Parkinson's disease:a phase 2, multicentre, double-blind, randomised trial[J]. Lancet Neurol, 2015, 14:795-803.
[46] Schwarzschild MA, Ascherio A, Beal MF, Cudkowicz ME, Curhan GC, Hare JM, Hooper DC, Kieburtz KD, Macklin EA, Oakes D, Rudolph A, Shoulson I, Tennis MK, Espay AJ, Gartner M, Hung A, Bwala G, Lenehan R, Encarnacion E, Ainslie M, Castillo R, Togasaki D, Barles G, Friedman JH, Niles L, Carter JH, Murray M, Goetz CG, Jaglin J, Ahmed A, Russell DS, Cotto C, Goudreau JL, Russell D, Parashos SA, Ede P, Saint-Hilaire MH, Thomas CA, James R, Stacy MA, Johnson J, Gauger L, Antonelle de Marcaida J, Thurlow S, Isaacson SH, Carvajal L, Rao J, Cook M, Hope-Porche C, McClurg L, Grasso DL, Logan R, Orme C, Ross T, Brocht AF, Constantinescu R, Sharma S, Venuto C, Weber J, Eaton K; Parkinson Study Group SURE-PD Investigators. Inosine to increase serum and cerebrospinal fluid urate in Parkinson disease:a randomized clinical trial[J]. JAMA Neurol, 2014, 71:141-150.
[47] Beal MF, Oakes D, Shoulson I, Henchcliffe C, Galpern WR, Haas R, Juncos JL, Nutt JG, Voss TS, Ravina B, Shults CM, Helles K, Snively V, Lew MF, Griebner B, Watts A, Gao S, Pourcher E, Bond L, Kompoliti K, Agarwal P, Sia C, Jog M, Cole L, Sultana M, Kurlan R, Richard I, Deeley C, Waters CH, Figueroa A, Arkun A, Brodsky M, Ondo WG, Hunter CB, Jimenez-Shahed J, Palao A, Miyasaki JM, So J, Tetrud J, Reys L, Smith K, Singer C, Blenke A, Russell DS, Cotto C, Friedman JH, Lannon M, Zhang L, Drasby E, Kumar R, Subramanian T, Ford DS, Grimes DA, Cote D, Conway J, Siderowf AD, Evatt ML, Sommerfeld B, Lieberman AN, Okun MS, Rodriguez RL, Merritt S, Swartz CL, Martin WR, King P, Stover N, Guthrie S, Watts RL, Ahmed A, Fernandez HH, Winters A, Mari Z, Dawson TM, Dunlop B, Feigin AS, Shannon B, Nirenberg MJ, Ogg M, Ellias SA, Thomas CA, Frei K, Bodis-Wollner I, Glazman S, Mayer T, Hauser RA, Pahwa R, Langhammer A, Ranawaya R, Derwent L, Sethi KD, Farrow B, Prakash R, Litvan I, Robinson A, Sahay A, Gartner M, Hinson VK, Markind S, Pelikan M, Perlmutter JS, Hartlein J, Molho E, Evans S, Adler CH, Duffy A, Lind M, Elmer L, Davis K, Spears J, Wilson S, Leehey MA, Hermanowicz N, Niswonger S, Shill HA, Obradov S, Rajput A, Cowper M, Lessig S, Song D, Fontaine D, Zadikoff C, Williams K, Blindauer KA, Bergholte J, Propsom CS, Stacy MA, Field J, Mihaila D, Chilton M, Uc EY, Sieren J, Simon DK, Kraics L, Silver A, Boyd JT, Hamill RW, Ingvoldstad C, Young J, Thomas K, Kostyk SK, Wojcieszek J, Pfeiffer RF, Panisset M, Beland M, Reich SG, Cines M, Zappala N, Rivest J, Zweig R, Lumina LP, Hilliard CL, Grill S, Kellermann M, Tuite P, Rolandelli S, Kang UJ, Young J, Rao J, Cook MM, Severt L, Boyar K; Parkinson Study Group QE3 Investigators. A randomized clinical trial of high-dosage coenzyme Q10 in early Parkinson disease:no evidence of benefit[J]. JAMA Neurol, 2014, 71:543-552.
[48] Prasuhn J, Brüggemann N, Hessler N, Berg D, Gasser T, Brockmann K, Olbrich D, Ziegler A, König IR, Klein C, Kasten M. An omics-based strategy using coenzyme Q10 in patients with Parkinson's disease:concept evaluation in a double-blind randomized placebo-controlled parallel group trial[J]. Neurol Res Pract, 2019, 1:31.
[49] Carling PJ, Mortiboys H, Green C, Mihaylov S, Sandor C, Schwartzentruber A, Taylor R, Wei W, Hastings C, Wong S, Lo C, Evetts S, Clemmens H, Wyles M, Willcox S, Payne T, Hughes R, Ferraiuolo L, Webber C, Hide W, Wade-Martins R, Talbot K, Hu MT, Bandmann O. Deep phenotyping of peripheral tissue facilitates mechanistic disease stratification in sporadic Parkinson's disease[J]. Prog Neurobiol, 2020, 187:101772.
[50] Sathe AG, Tuite P, Chen C, Ma Y, Chen W, Cloyd J, Low WC, Steer CJ, Lee BY, Zhu XH, Coles LD. Pharmacokinetics, safety, and tolerability of orally administered ursodeoxycholic acid in patients with Parkinson's disease:a pilot study[J]. J Clin Pharmacol, 2020, 60:744-750.
[51] Payne T, Sassani M, Buckley E, Moll S, Anton A, Appleby M, Maru S, Taylor R, McNeill A, Hoggard N, Mazza C, Wilkinson ID, Jenkins T, Foltynie T, Bandmann O. Ursodeoxycholic acid as a novel disease-modifying treatment for Parkinson's disease:protocol for a two-centre, randomised, double-blind, placebo-controlled trial, the ‘UP’ study[J]. BMJ Open, 2020, 10:e038911.
[52] Bhattamisra SK, Shin LY, Saad HIBM, Rao V, Candasamy M, Pandey M, Choudhury H. Interlink between insulin resistance and neurodegeneration with an update on current therapeutic approaches[J]. CNS Neurol Disord Drug Targets, 2020, 19:174-183.
[53] Athauda D, Foltynie T. Insulin resistance and Parkinson's disease:a new target for disease modification[J]? Prog Neurobiol, 2016, 145-146:98-120.
[54] Mejido DCP, Peny JA, Vieira MNN, Ferreira ST, De Felice FG. Insulin and leptin as potential cognitive enhancers in metabolic disorders and Alzheimer's disease[J]. Neuropharmacology, 2020, 171:108115.
[55] Hölscher C. Protective properties of GLP-1 and associated peptide hormones in neurodegenerative disorders[J]. Br J Pharmacol, 2021[.Epub ahead of print]
[56] Zhang L, Zhang L, Li L, Hölscher C. Semaglutide is neuroprotective and reduces α-synuclein levels in the chronic MPTP mouse model of Parkinson's disease[J]. J Parkinsons Dis, 2019, 9:157-171.
[57] Aviles-Olmos I, Dickson J, Kefalopoulou Z, Djamshidian A, Ell P, Soderlund T, Whitton P, Wyse R, Isaacs T, Lees A, Limousin P, Foltynie T. Exenatide and the treatment of patients with Parkinson's disease[J]. J Clin Invest, 2013, 123:2730-2736.
[58] Aviles-Olmos I, Dickson J, Kefalopoulou Z, Djamshidian A, Kahan J, Ell P, Whitton P, Wyse R, Isaacs T, Lees A, Limousin P, Foltynie T. Motor and cognitive advantages persist 12 months after exenatide exposure in Parkinson's disease[J]. J Parkinsons Dis, 2014, 4:337-344.
[59] Athauda D, Maclagan K, Skene SS, Bajwa-Joseph M, Letchford D, Chowdhury K, Hibbert S, Budnik N, Zampedri L, Dickson J, Li Y, Aviles-Olmos I, Warner TT, Limousin P, Lees AJ, Greig NH, Tebbs S, Foltynie T. Exenatide once weekly versus placebo in Parkinson's disease:a randomised, double-blind, placebo-controlled trial[J]. Lancet, 2017, 390:1664-1675.
[60] Athauda D, Gulyani S, Karnati HK, Li Y, Tweedie D, Mustapic M, Chawla S, Chowdhury K, Skene SS, Greig NH, Kapogiannis D, Foltynie T. Utility of neuronal-derived exosomes to examine molecular mechanisms that affect motor function in patients with Parkinson disease:a secondary analysis of the exenatide-PD trial[J]. JAMA Neurol, 2019, 76:420-429.
[61] Zhang L, Zhang L, Li Y, Li L, Melchiorsen JU, Rosenkilde M, Hölscher C. The novel dual GLP-1/GIP receptor agonist DA-CH5 is superior to single GLP-1 receptor agonists in the MPTP model of Parkinson's disease[J]. J Parkinsons Dis, 2020, 10:523-542.
[62] Pajares M, I Rojo A, Manda G, Boscá L, Cuadrado A. Inflammation in Parkinson's disease:mechanisms and therapeutic implications[J]. Cells, 2020, 9:1687.
[63] Yang L, Mao K, Yu H, Chen J. Neuroinflammatory responses and Parkinson' disease:pathogenic mechanisms and therapeutic targets[J]. J Neuroimmune Pharmacol, 2020, 15:830-837.
[64] Ravichandran KA, Heneka MT. Inflammasome activation in neurodegenerative diseases[J]. Essays Biochem, 2021, 65:885-904.
[65] Gendelman HE, Zhang Y, Santamaria P, Olson KE, Schutt CR, Bhatti D, Shetty BLD, Lu Y, Estes KA, Standaert DG, Heinrichs-Graham E, Larson L, Meza JL, Follett M, Forsberg E, Siuzdak G, Wilson TW, Peterson C, Mosley RL. Evaluation of the safety and immunomodulatory effects of sargramostim in a randomized, double-blind phase 1 clinical Parkinson's disease trial[J]. NPJ Parkinsons Dis, 2017, 3:10.
[66] Jucaite A, Svenningsson P, Rinne JO, Cselényi Z, Varnäs K, Johnström P, Amini N, Kirjavainen A, Helin S, Minkwitz M, Kugler AR, Posener JA, Budd S, Halldin C, Varrone A, Farde L. Effect of the myeloperoxidase inhibitor AZD3241 on microglia:a PET study in Parkinson's disease[J]. Brain, 2015, 138(Pt 9):2687-2700.
[67] Si XL, Fang YJ, Li LF, Gu LY, Yin XZ, Jun-Tian, Yan YP, Pu JL, Zhang BR. From inflammasome to Parkinson's disease:does the NLRP3 inflammasome facilitate exosome secretion and exosomal alpha-synuclein transmission in Parkinson's disease[J]? Exp Neurol, 2021, 336:113525.
[68] Huang S, Chen Z, Fan B, Chen Y, Zhou L, Jiang B, Long H, Zhong W, Li X, Li Y. A selective NLRP3 inflammasome inhibitor attenuates behavioral deficits and neuroinflammation in a mouse model of Parkinson's disease[J]. J Neuroimmunol, 2021, 354:577543.
[69] Gordon R, Albornoz EA, Christie DC, Langley MR, Kumar V, Mantovani S, Robertson AAB, Butler MS, Rowe DB, O'Neill LA, Kanthasamy AG, Schroder K, Cooper MA, Woodruff TM. Inflammasome inhibition prevents alpha-synuclein pathology and dopaminergic neurodegeneration in mice[J]. Sci Transl Med, 2018, 10:eaah4066.
[70] Williams-Gray CH, Wijeyekoon R, Yarnall AJ, Lawson RA, Breen DP, Evans JR, Cummins GA, Duncan GW, Khoo TK, Burn DJ, Barker RA; ICICLE-PD study group. Serum immune markers and disease progression in an incident Parkinson's disease cohort (ICICLE-PD)[J]. Mov Disord, 2016, 31:995-1003.
[71] Broen JCA, van Laar JM. Mycophenolate mofetil, azathioprine and tacrolimus:mechanisms in rheumatology[J]. Nat Rev Rheumatol, 2020, 16:167-178.
[72] Du RW, Bu WG. Simvastatin prevents neurodegeneration in the MPTP mouse model of Parkinson's disease via inhibition of A1 reactive astrocytes[J]. Neuroimmunomodulation, 2021, 28:82-89.
[73] Yan J, Liu A, Fan H, Qiao L, Wu J, Shen M, Lai X, Huang J. Simvastatin improves behavioral disorders and hippocampal inflammatory reaction by NMDA-mediated anti-inflammatory function in MPTP-treated mice[J]. Cell Mol Neurobiol, 2020, 40:1155-1164.
[74] Carroll CB, Webb D, Stevens KN, Vickery J, Eyre V, Ball S, Wyse R, Webber M, Foggo A, Zajicek J, Whone A, Creanor S. Simvastatin as a neuroprotective treatment for Parkinson's disease (PD STAT):protocol for a double-blind, randomised, placebo-controlled futility study[J]. BMJ Open, 2019, 9:e029740.
[75] Liss B, Striessnig J. The potential of L-type calcium channels as a drug target for neuroprotective therapy in Parkinson's disease[J]. Annu Rev Pharmacol Toxicol, 2019, 59:263-289.
[76] Verma A, Ravindranath V. CaV1.3 L-type calcium channels increase the vulnerability of substantia nigra dopaminergic neurons in MPTP mouse model of Parkinson's disease[J]. Front Aging Neurosci, 2020, 11:382.
[77] Becker C, Jick SS, Meier CR. Use of antihypertensives and the risk of Parkinson disease[J]. Neurology, 2008, 70(16 Pt 2):1438-1444.
[78] Steece-Collier K, Stancati JA, Collier NJ, Sandoval IM, Mercado NM, Sortwell CE, Collier TJ, Manfredsson FP. Genetic silencing of striatal CaV1.3 prevents and ameliorates levodopa dyskinesia[J]. Mov Disord, 2019, 34:697-707.
[79] Ilijic E, Guzman JN, Surmeier DJ. The L-type channel antagonist isradipine is neuroprotective in a mouse model of Parkinson's disease[J]. Neurobiol Dis, 2011, 43:364-371.
[80] Parkinson Study Group. Phase Ⅱ safety, tolerability, and dose selection study of isradipine as a potential disease:modifying intervention in early Parkinson's disease (STEADY-PD)[J]. Mov Disord, 2013, 28:1823-1831.
[81] Parkinson Study Group STEADY-PD Ⅲ Investigators. Isradipine versus placebo in early Parkinson disease:a randomized trial[J]. Ann Intern Med, 2020, 172:591-598.
[82] Boag MK, Ma L, Mellick GD, Pountney DL, Feng Y, Quinn RJ, Liew AW, Dharmasivam M, Azad MG, Afroz R, Richardson DR. Calcium channels and iron metabolism:a redox catastrophe in Parkinson's disease and an innovative path to novel therapies[J]? Redox Biol, 2021, 47:102136.
[83] Langley J, He N, Huddleston DE, Chen S, Yan F, Crosson B, Factor S, Hu X. Reproducible detection of nigral iron deposition in 2 Parkinson's disease cohorts[J]. Mov Disord, 2019, 34:416-419.
[84] Bjørklund G, Hofer T, Nurchi VM, Aaseth J. Iron and other metals in the pathogenesis of Parkinson's disease:toxic effects and possible detoxification[J]. J Inorg Biochem, 2019, 199:110717.
[85] Martin-Bastida A, Ward RJ, Newbould R, Piccini P, Sharp D, Kabba C, Patel MC, Spino M, Connelly J, Tricta F, Crichton RR, Dexter DT. Brain iron chelation by deferiprone in a phase 2 randomised double-blinded placebo controlled clinical trial in Parkinson's disease[J]. Sci Rep, 2017, 7:1398.
[86] Devos D, Cabantchik ZI, Moreau C, Danel V, Mahoney-Sanchez L, Bouchaoui H, Gouel F, Rolland AS, Duce JA, Devedjian JC; FAIRPARK-Ⅱ and FAIRALS-Ⅱ studygroups. Conservative iron chelation for neurodegenerative diseases such as Parkinson's disease and amyotrophic lateral sclerosis[J]. J Neural Transm (Vienna), 2020, 127:189-203. |