[1] Kovacs GG. Concepts and classification of neurodegenerative diseases[J]. Handb Clin Neurol, 2017, 145:301-307. [2] Hohenfeld C, Werner CJ, Reetz K. Resting-state connectivity in neurodegenerative disorders:is there potential for an imaging biomarker[J]? Neuroimage Clin, 2018, 18:849-870. [3] Lv H, Wang Z, Tong E, Williams LM, Zaharchuk G, Zeineh M, Goldstein-Piekarski AN, Ball TM, Liao C, Wintermark M. Resting-state functional MRI:everything that nonexperts have always wanted to know[J]. AJNR Am J Neuroradiol, 2018, 39:1390-1399. [4] Han L, Zhaohui L, Fei Y, Pengfei Z, Ting L, Cheng D, Zhenchang W. Disrupted neural activity in unilateral vascular pulsatile tinnitus patients in the early stage of disease:evidence from resting-state fMRI[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2015, 59:91-99. [5] Arbabshirani MR, Havlicek M, Kiehl KA, Pearlson GD, Calhoun VD. Functional network connectivity during rest and task conditions:a comparative study[J]. Hum Brain Mapp, 2013, 34:2959-2971. [6] Raj A. Graph models of pathology spread in Alzheimer's disease:an alternative to conventional graph theoretic analysis[J]. Brain Connect, 2021, 11:799-814. [7] de Vos F, Koini M, Schouten TM, Seiler S, van der Grond J, Lechner A, Schmidt R, de Rooij M, Rombouts SARB. A comprehensive analysis of resting state fMRI measures to classify individual patients with Alzheimer's disease[J]. Neuroimage, 2018, 167:62-72. [8] Bernas A, Aldenkamp AP, Zinger S. Wavelet coherence-based classifier:a resting-state functional MRI study on neurodynamics in adolescents with high-functioning autism[J]. Comput Methods Programs Biomed, 2018, 154:143-151. [9] Janes AC, Peechatka AL, Frederick BB, Kaiser RH. Dynamic functioning of transient resting-state coactivation networks in the Human Connectome Project[J]. Hum Brain Mapp, 2020, 41:373-387. [10] Park HJ, Friston KJ, Pae C, Park B, Razi A. Dynamic effective connectivity in resting state fMRI[J]. Neuroimage, 2018, 180(Pt B):594-608. [11] Agosta F, Pievani M, Geroldi C, Copetti M, Frisoni GB, Filippi M. Resting state fMRI in Alzheimer's disease:beyond the default mode network[J]. Neurobiol Aging, 2012, 33:1564-1578. [12] Jones DT, Machulda MM, Vemuri P, McDade EM, Zeng G, Senjem ML, Gunter JL, Przybelski SA, Avula RT, Knopman DS, Boeve BF, Peterson RC, Jack CR Jr. Age-related changes in the default mode network are more advanced in Alzheimer disease[J]. Neurology, 2011, 77:1524-1531. [13] Jones DT, Vemuri P, Murphy MC, Gunter JL, Senjem ML, Machulda MM, Przybelski SA, Gregg BE, Kantarci K, Knopman DS, Boeve BF, Petersen RC, Jack CR Jr. Non-stationarity in the "resting brain's" modular architecture[J]. PLoS One, 2012, 7:e39731. [14] Córdova-Palomera A, Kaufmann T, Persson K, Alnæs D, Doan NT, Moberget T, Lund MJ, Barca ML, Engvig A, Brækhus A, Engedal K, Andreassen OA, Selbæk G, Westlye LT. Disrupted global metastability and static and dynamic brain connectivity across individuals in the Alzheimer's disease continuum[J]. Sci Rep, 2017, 7:40268. [15] Demirtaş M, Falcon C, Tucholka A, Gispert JD, Molinuevo JL, Deco G. A whole-brain computational modeling approach to explain the alterations in resting-state functional connectivity during progression of Alzheimer's disease[J]. Neuroimage Clin, 2017, 16:343-354. [16] Quevenco FC, Preti MG, van Bergen JM, Hua J, Wyss M, Li X, Schreiner SJ, Steininger SC, Meyer R, Meier IB, Brickman AM, Leh SE, Gietl AF, Buck A, Nitsch RM, Pruessmann KP, van Zijl PC, Hock C, Van De Ville D, Unschuld PG. Memory performance-related dynamic brain connectivity indicates pathological burden and genetic risk for Alzheimer's disease[J]. Alzheimers Res Ther, 2017, 9:24. [17] Li T, Liao Z, Mao Y, Hu J, Le D, Pei Y, Sun W, Lin J, Qiu Y, Zhu J, Chen Y, Qi C, Ye X, Su H, Yu E. Temporal dynamic changes of intrinsic brain activity in Alzheimer's disease and mild cognitive impairment patients:a resting-state functional magnetic resonance imaging study[J]. Ann Transl Med, 2021, 9:63. [18] Yu Y, Li Z, Lin Y, Yu J, Peng G, Zhang K, Jia X, Luo B. Depression affects intrinsic brain activity in patients with mild cognitive impairment[J]. Front Neurosci, 2019, 13:1333. [19] Putcha D, Ross RS, Cronin-Golomb A, Janes AC, Stern CE. Altered intrinsic functional coupling between core neurocognitive networks in Parkinson's disease[J]. Neuroimage Clin, 2015, 7:449-455. [20] Baggio HC, Segura B, Sala-Llonch R, Marti MJ, Valldeoriola F, Compta Y, Tolosa E, Junqué C. Cognitive impairment and resting-state network connectivity in Parkinson's disease[J]. Hum Brain Mapp, 2015, 36:199-212. [21] Kim J, Criaud M, Cho SS, Díez-Cirarda M, Mihaescu A, Coakeley S, Ghadery C, Valli M, Jacobs MF, Houle S, Strafella AP. Abnormal intrinsic brain functional network dynamics in Parkinson's disease[J]. Brain, 2017, 140:2955-2967. [22] Cordes D, Zhuang X, Kaleem M, Sreenivasan K, Yang Z, Mishra V, Banks SJ, Bluett B, Cummings JL. Advances in functional magnetic resonance imaging data analysis methods using Empirical Mode Decomposition to investigate temporal changes in early Parkinson's disease[J]. Alzheimers Dement (NY), 2018, 4:372-386. [23] Fiorenzato E, Strafella AP, Kim J, Schifano R, Weis L, Antonini A, Biundo R. Dynamic functional connectivity changes associated with dementia in Parkinson's disease[J]. Brain, 2019, 142:2860-2872. [24] Díez-Cirarda M, Strafella AP, Kim J, Peña J, Ojeda N, Cabrera-Zubizarreta A, Ibarretxe-Bilbao N. Dynamic functional connectivity in Parkinson's disease patients with mild cognitive impairment and normal cognition[J]. Neuroimage Clin, 2017, 17:847-855. [25] Navalpotro-Gomez I, Kim J, Paz-Alonso PM, Delgado-Alvarado M, Quiroga-Varela A, Jimenez-Urbieta H, Carreiras M, Strafella AP, Rodriguez-Oroz MC. Disrupted salience network dynamics in Parkinson's disease patients with impulse control disorders[J]. Parkinsonism Relat Disord, 2020, 70:74-81. [26] Li X, Xiong Y, Liu S, Zhou R, Hu Z, Tong Y, He L, Niu Z, Ma Y, Guo H. Predicting the Post-therapy Severity Level (UPDRS-Ⅲ) of patients with Parkinson's disease after drug therapy by using the dynamic connectivity efficiency of fMRI[J]. Front Neurol, 2019, 10:668. [27] Zhang C, Dou B, Wang J, Xu K, Zhang H, Sami MU, Hu C, Rong Y, Xiao Q, Chen N, Li K. Dynamic alterations of spontaneous neural activity in Parkinson's disease:a resting-state fMRI study[J]. Front Neurol, 2019, 10:1052. [28] McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor JP, Weintraub D, Aarsland D, Galvin J, Attems J, Ballard CG, Bayston A, Beach TG, Blanc F, Bohnen N, Bonanni L, Bras J, Brundin P, Burn D, Chen-Plotkin A, Duda JE, El-Agnaf O, Feldman H, Ferman TJ, Ffytche D, Fujishiro H, Galasko D, Goldman JG, Gomperts SN, Graff-Radford NR, Honig LS, Iranzo A, Kantarci K, Kaufer D, Kukull W, Lee VMY, Leverenz JB, Lewis S, Lippa C, Lunde A, Masellis M, Masliah E, McLean P, Mollenhauer B, Montine TJ, Moreno E, Mori E, Murray M, O'Brien JT, Orimo S, Postuma RB, Ramaswamy S, Ross OA, Salmon DP, Singleton A, Taylor A, Thomas A, Tiraboschi P, Toledo JB, Trojanowski JQ, Tsuang D, Walker Z, Yamada M, Kosaka K. Diagnosis and management of dementia with Lewy bodies:fourth consensus report of the DLB Consortium[J]. Neurology, 2017, 89:88-100. [29] Lowther ER, O'Brien JT, Firbank MJ, Blamire AM. Lewy body compared with Alzheimer dementia is associated with decreased functional connectivity in resting state networks[J]. Psychiatry Res, 2014, 223:192-201. [30] Sourty M, Thoraval L, Roquet D, Armspach JP, Foucher J, Blanc F. Identifying dynamic functional connectivity changes in dementia with Lewy Bodies based on Product Hidden Markov Models[J]. Front Comput Neurosci, 2016, 10:60. [31] Schumacher J, Taylor JP, Hamilton CA, Firbank M, Cromarty RA, Donaghy PC, Roberts G, Allan L, Lloyd J, Durcan R, Barnett N, O'Brien JT, Thomas AJ. Quantitative EEG as a biomarker in mild cognitive impairment with Lewy bodies[J]. Alzheimers Res Ther, 2020, 12:82. [32] Schumacher J, Taylor JP, Hamilton CA, Firbank M, Donaghy PC, Roberts G, Allan L, Durcan R, Barnett N, O'Brien JT, Thomas AJ. Functional connectivity in mild cognitive impairment with Lewy bodies[J]. J Neurol, 2021, 268:4707-4720. [33] Miller B, Llibre Guerra JJ. Frontotemporal dementia[J]. Handb Clin Neurol, 2019, 165:33-45. [34] Rohrer JD, Warren JD. Phenotypic signatures of genetic frontotemporal dementia[J]. Curr Opin Neurol, 2011, 24:542-549. [35] Premi E, Calhoun VD, Diano M, Gazzina S, Cosseddu M, Alberici A, Archetti S, Paternicò D, Gasparotti R, van Swieten J, Galimberti D, Sanchez-Valle R, Laforce R Jr, Moreno F, Synofzik M, Graff C, Masellis M, Tartaglia MC, Rowe J, Vandenberghe R, Finger E, Tagliavini F, de Mendonça A, Santana I, Butler C, Ducharme S, Gerhard A, Danek A, Levin J, Otto M, Frisoni G, Cappa S, Sorbi S, Padovani A, Rohrer JD, Borroni B; Genetic FTD Initiative, GENFI. The inner fluctuations of the brain in presymptomatic Frontotemporal Dementia:the chronnectome fingerprint[J]. Neuroimage, 2019, 189:645-654. |