1 |
van den Bosch AMR , Hümmert S , Steyer A , Ruhwedel T , Hamann J , Smolders J , Nave KA , Stadelmann C , Kole MHP , Möbius W , Huitinga I . Ultrastructural axon-myelin unit alterations in multiple sclerosis correlate with inflammation. Ann Neurol, 2023, 93: 856- 870.
doi: 10.1002/ana.26585
|
2 |
International Multiple Sclerosis Genetics Consortium . Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science, 2019, 365: eaav7188.
doi: 10.1126/science.aav7188
|
3 |
Kim CH . Complex regulatory effects of gut microbial short-chain fatty acids on immune tolerance and autoimmunity. Cell Mol Immunol, 2023, 20: 341- 350.
doi: 10.1038/s41423-023-00987-1
|
4 |
Attfield KE , Jensen LT , Kaufmann M , Friese MA , Fugger L . The immunology of multiple sclerosis. Nat Rev Immunol, 2022, 22: 734- 750.
doi: 10.1038/s41577-022-00718-z
|
5 |
Bourque J , Hawiger D . Life and death of tolerogenic dendritic cells. Trends Immunol, 2023, 44: 110- 118.
doi: 10.1016/j.it.2022.12.006
|
6 |
Cabeza-Cabrerizo M , Cardoso A , Minutti CM , Pereira da Costa M , Reis e Sousa C . Dendritic cells revisited. Annu Rev Immunol, 2021, 39: 131- 166.
doi: 10.1146/annurev-immunol-061020-053707
|
7 |
Funes SC , Manrique de Lara A , Altamirano-Lagos MJ , Mackern-Oberti JP , Escobar-Vera J , Kalergis AM . Immune checkpoints and the regulation of tolerogenicity in dendritic cells: implications for autoimmunity and immunotherapy. Autoimmun Rev, 2019, 18: 359- 368.
doi: 10.1016/j.autrev.2019.02.006
|
8 |
Lutz MB , Schuler G . Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity?. Trends Immunol, 2002, 23: 445- 449.
doi: 10.1016/S1471-4906(02)02281-0
|
9 |
Ardouin L , Luche H , Chelbi R , Carpentier S , Shawket A , Montanana Sanchis F , Santa Maria C , Grenot P , Alexandre Y , Grégoire C , Fries A , Vu Manh TP , Tamoutounour S , Crozat K , Tomasello E , Jorquera A , Fossum E , Bogen B , Azukizawa H , Bajenoff M , Henri S , Dalod M , Malissen B . Broad and Largely concordant molecular changes characterize tolerogenic and immunogenic dendritic cell maturation in thymus and periphery. Immunity, 2016, 45: 305- 318.
doi: 10.1016/j.immuni.2016.07.019
|
10 |
Maier B , Leader AM , Chen ST , Tung N , Chang C , LeBerichel J , Chudnovskiy A , Maskey S , Walker L , Finnigan JP , Kirkling ME , Reizis B , Ghosh S , D'Amore NR , Bhardwaj N , Rothlin CV , Wolf A , Flores R , Marron T , Rahman AH , Kenigsberg E , Brown BD , Merad M . A conserved dendritic-cell regulatory program limits antitumour immunity. Nature, 2020, 580: 257- 262.
doi: 10.1038/s41586-020-2134-y
|
11 |
Häusler D , Akgün K , Stork L , Lassmann H , Ziemssen T , Brück W , Metz I . CNS inflammation after natalizumab therapy for multiple sclerosis: a retrospective histopathological and CSF cohort study. Brain Pathol, 2021, 31: e12969.
doi: 10.1111/bpa.12969
|
12 |
Nishimura T , Saito Y , Washio K , Komori S , Respatika D , Kotani T , Murata Y , Ohnishi H , Mizobuchi S , Matozaki T . SIRPα on CD11c+ cells induces Th17 cell differentiation and subsequent inflammation in the CNS in experimental autoimmune encephalomyelitis. Eur J Immunol, 2020, 50: 1560- 1570.
doi: 10.1002/eji.201948410
|
13 |
Greter M , Heppner FL , Lemos MP , Odermatt BM , Goebels N , Laufer T , Noelle RJ , Becher B . Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med, 2005, 11: 328- 334.
doi: 10.1038/nm1197
|
14 |
Fransen NL , Hsiao CC , van der Poel M , Engelenburg HJ , Verdaasdonk K , Vincenten MCJ , Remmerswaal EBM , Kuhlmann T , Mason MRJ , Hamann J , Smolders J , Huitinga I . Tissue-resident memory T cells invade the brain parenchyma in multiple sclerosis white matter lesions. Brain, 2020, 143: 1714- 1730.
doi: 10.1093/brain/awaa117
|
15 |
Mundt S , Mrdjen D , Utz SG , Greter M , Schreiner B , Becher B . Conventional DCs sample and present myelin antigens in the healthy CNS and allow parenchymal T cell entry to initiate neuroinflammation. Sci Immunol, 2019, 4: eaau8380.
doi: 10.1126/sciimmunol.aau8380
|
16 |
Jordão MJC , Sankowski R , Brendecke SM , Sagar , Locatelli G , Tai YH , Tay TL , Schramm E , Armbruster S , Hagemeyer N , Groß O , Mai D , ÇiçekÖ , Falk T , Kerschensteiner M , Grün D , Prinz M . Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science, 2019, 363: eaat7554.
doi: 10.1126/science.aat7554
|
17 |
Sagar D , Lamontagne A , Foss CA , Khan ZK , Pomper MG , Jain P . Dendritic cell CNS recruitment correlates with disease severity in EAE via CCL2 chemotaxis at the blood-brain barrier through paracellular transmigration and ERK activation. J Neuroinflammation, 2012, 9: 245.
doi: 10.1186/1742-2094-9-245
|
18 |
Zozulya AL , Ortler S , Lee J , Weidenfeller C , Sandor M , Wiendl H , Fabry Z . Intracerebral dendritic cells critically modulate encephalitogenic versus regulatory immune responses in the CNS. J Neurosci, 2009, 29: 140- 152.
doi: 10.1523/JNEUROSCI.2199-08.2009
|
19 |
Yogev N , Frommer F , Lukas D , Kautz-Neu K , Karram K , Ielo D , von Stebut E , Probst HC , van den Broek M , Riethmacher D , Birnberg T , Blank T , Reizis B , Korn T , Wiendl H , Jung S , Prinz M , Kurschus FC , Waisman A . Dendritic cells ameliorate autoimmunity in the CNS by controlling the homeostasis of PD-1 receptor+ regulatory T cells. Immunity, 2012, 37: 264- 275.
doi: 10.1016/j.immuni.2012.05.025
|
20 |
Karni A , Abraham M , Monsonego A , Cai G , Freeman GJ , Hafler D , Khoury SJ , Weiner HL . Innate immunity in multiple sclerosis: myeloid dendritic cells in secondary progressive multiple sclerosis are activated and drive a proinflammatory immune response. J Immunol, 2006, 177: 4196- 4202.
doi: 10.4049/jimmunol.177.6.4196
|
21 |
Huang YM , Xiao BG , Ozenci V , Kouwenhoven M , Teleshova N , Fredrikson S , Link H . Multiple sclerosis is associated with high levels of circulating dendritic cells secreting pro-inflammatory cytokines. J Neuroimmunol, 1999, 99: 82- 90.
doi: 10.1016/S0165-5728(99)00106-X
|
22 |
Thewissen K , Nuyts AH , Deckx N , Van Wijmeersch B , Nagels G , D'hooghe M , Willekens B , Cras P , Eijnde BO , Goossens H , Van Tendeloo VF , Stinissen P , Berneman ZN , Hellings N , Cools N . Circulating dendritic cells of multiple sclerosis patients are proinflammatory and their frequency is correlated with MS-associated genetic risk factors. Mult Scler, 2014, 20: 548- 557.
doi: 10.1177/1352458513505352
|
23 |
Liu C , Zhu J , Mi Y , Jin T . Impact of disease-modifying therapy on dendritic cells and exploring their immunotherapeutic potential in multiple sclerosis. J Neuroinflammation, 2022, 19: 298.
doi: 10.1186/s12974-022-02663-z
|
24 |
Quintana FJ , Murugaiyan G , Farez MF , Mitsdoerffer M , Tukpah AM , Burns EJ , Weiner HL . An endogenous aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA, 2010, 107: 20768- 20773.
doi: 10.1073/pnas.1009201107
|
25 |
Xie Z , Chen J , Zheng C , Wu J , Cheng Y , Zhu S , Lin C , Cao Q , Zhu J , Jin T . 1, 25-dihydroxyvitamin D3-induced dendritic cells suppress experimental autoimmune encephalomyelitis by increasing proportions of the regulatory lymphocytes and reducing T helper type 1 and type 17 cells. Immunology, 2017, 152: 414- 424.
doi: 10.1111/imm.12776
|
26 |
Mascanfroni ID , Yeste A , Vieira SM , Burns EJ , Patel B , Sloma I , Wu Y , Mayo L , Ben-Hamo R , Efroni S , Kuchroo VK , Robson SC , Quintana FJ . IL-27 acts on DCs to suppress the T cell response and autoimmunity by inducing expression of the immunoregulatory molecule CD39. Nat Immunol, 2013, 14: 1054- 1063.
doi: 10.1038/ni.2695
|
27 |
Zheng C , Liu L , Liu C , Chu F , Lang Y , Liu S , Mi Y , Zhu J , Jin T . Alleviation of experimental autoimmune encephalomyelitis by transferring low RelB expression tolerogenic dendritic cells. Biochim Biophys Acta Mol Basis Dis, 2024, 1870: 166934.
doi: 10.1016/j.bbadis.2023.166934
|
28 |
Qureshi OS , Zheng Y , Nakamura K , Attridge K , Manzotti C , Schmidt EM , Baker J , Jeffery LE , Kaur S , Briggs Z , Hou TZ , Futter CE , Anderson G , Walker LS , Sansom DM . Trans-endocytosis of CD80 and CD86:a molecular basis for the cell-extrinsic function of CTLA-4. Science, 2011, 332: 600- 603.
doi: 10.1126/science.1202947
|
29 |
Vogel I , Kasran A , Cremer J , Kim YJ , Boon L , Van Gool SW , Ceuppens JL . CD28/CTLA-4/B7 costimulatory pathway blockade affects regulatory T-cell function in autoimmunity. Eur J Immunol, 2015, 45: 1832- 1841.
doi: 10.1002/eji.201445190
|
30 |
Alissafi T , Banos A , Boon L , Sparwasser T , Ghigo A , Wing K , Vassilopoulos D , Boumpas D , Chavakis T , Cadwell K , Verginis P . Tregs restrain dendritic cell autophagy to ameliorate autoimmunity. J Clin Invest, 2017, 127: 2789- 2804.
doi: 10.1172/JCI92079
|
31 |
Whitfield SJC , Taylor C , Risdall JE , Griffiths GD , Jones JTA , Williamson ED , Rijpkema S , Saraiva L , Vessillier S , Green AC , Carter AJ . Interference of the T cell and antigen-presenting cell costimulatory pathway using CTLA4-Ig (abatacept) prevents staphylococcal enterotoxin B pathology. J Immunol, 2017, 198: 3989- 3998.
doi: 10.4049/jimmunol.1601525
|
32 |
Daei Sorkhabi A , Komijani E , Sarkesh A , Ghaderi Shadbad P , Aghebati-Maleki A , Aghebati-Maleki L . Advances in immune checkpoint-based immunotherapies for multiple sclerosis: rationale and practice. Cell Commun Signal, 2023, 21: 321.
doi: 10.1186/s12964-023-01289-9
|
33 |
Han Y , Liu D , Li L . PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res, 2020, 10: 727- 742.
|
34 |
Hargadon KM , Johnson CE , Williams CJ . Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol, 2018, 62: 29- 39.
doi: 10.1016/j.intimp.2018.06.001
|
35 |
Liao W , Zheng H , Wu S , Zhang Y , Wang W , Zhang Z , Zhou C , Wu H , Min J . The systemic activation of programmed death 1-PD-L1 axis protects systemic lupus erythematosus model from nephritis. Am J Nephrol, 2017, 46: 371- 379.
doi: 10.1159/000480641
|
36 |
Ding Y , Han R , Jiang W , Xiao J , Liu H , Chen X , Li X , Hao J . Programmed death ligand 1 plays a neuroprotective role in experimental autoimmune neuritis by controlling peripheral nervous system inflammation of rats. J Immunol, 2016, 197: 3831- 3840.
doi: 10.4049/jimmunol.1601083
|
37 |
Kroner A , Mehling M , Hemmer B , Rieckmann P , Toyka KV , Mäurer M , Wiendl H . A PD-1 polymorphism is associated with disease progression in multiple sclerosis. Ann Neurol, 2005, 58: 50- 57.
doi: 10.1002/ana.20514
|
38 |
Feng X , Bao R , Li L , Deisenhammer F , Arnason BGW , Reder AT . Interferon-β corrects massive gene dysregulation in multiple sclerosis: short-term and long-term effects on immune regulation and neuroprotection. EBioMedicine, 2019, 49: 269- 283.
doi: 10.1016/j.ebiom.2019.09.059
|
39 |
Bodhankar S , Galipeau D , Vandenbark AA , Offner H . PD-1 interaction with PD-L1 but not PD-L2 on B-cells mediates protective effects of estrogen against EAE. J Clin Cell Immunol, 2013, 4: 143.
|
40 |
Salama AD , Chitnis T , Imitola J , Ansari MJ , Akiba H , Tushima F , Azuma M , Yagita H , Sayegh MH , Khoury SJ . Critical role of the programmed death-1(PD-1) pathway in regulation of experimental autoimmune encephalomyelitis. J Exp Med, 2003, 198: 71- 78.
doi: 10.1084/jem.20022119
|
41 |
Herold M , Posevitz V , Chudyka D , Hucke S , Groß C , Kurth F , Leder C , Loser K , Kurts C , Knolle P , Klotz L , Wiendl H . B7-H1 selectively controls TH17 differentiation and central nervous system autoimmunity via a novel non-PD-1-mediated pathway. J Immunol, 2015, 195: 3584- 3595.
doi: 10.4049/jimmunol.1402746
|
42 |
Castenmiller C , Keumatio-Doungtsop BC , van Ree R , de Jong EC , van Kooyk Y . Tolerogenic immunotherapy: targeting DC surface receptors to induce antigen-specific tolerance. Front Immunol, 2021, 12: 643240.
doi: 10.3389/fimmu.2021.643240
|
43 |
Cifuentes-Rius A , Desai A , Yuen D , Johnston APR , Voelcker NH . Inducing immune tolerance with dendritic cell-targeting nanomedicines. Nat Nanotechnol, 2021, 16: 37- 46.
doi: 10.1038/s41565-020-00810-2
|
44 |
Jung HH , Kim SH , Moon JH , Jeong SU , Jang S , Park CS , Lee CK . Polymeric nanoparticles containing both antigen and vitamin D3 induce antigen-specific immune suppression. Immune Netw, 2019, 19: e19.
doi: 10.4110/in.2019.19.e19
|
45 |
LaMothe RA , Kolte PN , Vo T , Ferrari JD , Gelsinger TC , Wong J , Chan VT , Ahmed S , Srinivasan A , Deitemeyer P , Maldonado RA , Kishimoto TK . Tolerogenic nanoparticles induce antigen-specific regulatory T cells and provide therapeutic efficacy and transferrable tolerance against experimental autoimmune encephalomyelitis. Front Immunol, 2018, 9: 281.
doi: 10.3389/fimmu.2018.00281
|
46 |
Kim SH , Moon JH , Jeong SU , Jung HH , Park CS , Hwang BY , Lee CK . Induction of antigen-specific immune tolerance using biodegradable nanoparticles containing antigen and dexamethasone. Int J Nanomedicine, 2019, 14: 5229- 5242.
doi: 10.2147/IJN.S210546
|
47 |
Beskid NM , Kolawole EM , Coronel MM , Nguyen B , Evavold B , García AJ , Babensee JE . IL-10-functionalized hydrogels support immunosuppressive dendritic cell phenotype and function. ACS Biomater Sci Eng, 2022, 8: 4341- 4353.
doi: 10.1021/acsbiomaterials.2c00465
|
48 |
Li PY , Bearoff F , Zhu P , Fan Z , Zhu Y , Fan M , Cort L , Kambayashi T , Blankenhorn EP , Cheng H . PEGylation enables subcutaneously administered nanoparticles to induce antigen-specific immune tolerance. J Control Release, 2021, 331: 164- 175.
doi: 10.1016/j.jconrel.2021.01.013
|
49 |
Kenison JE , Stevens NA , Quintana FJ . Therapeutic induction of antigen-specific immune tolerance. Nat Rev Immunol, 2024, 24: 338- 357.
doi: 10.1038/s41577-023-00970-x
|
50 |
Prinz M , Garbe F , Schmidt H , Mildner A , Gutcher I , Wolter K , Piesche M , Schroers R , Weiss E , Kirschning CJ , Rochford CD , Brück W , Becher B . Innate immunity mediated by TLR9 modulates pathogenicity in an animal model of multiple sclerosis. J Clin Invest, 2006, 116: 456- 464.
doi: 10.1172/JCI26078
|
51 |
Crooks J , Gargaro M , Vacca C , Volpi C , Pirro M , Scalisi G , Turco A , Romani R , Matino D , Rostami A , Puccetti P , Gran B , Fallarino F . CpG type A induction of an early protective environment in experimental multiple sclerosis. Mediators Inflamm, 2017, ID1380615.
|
52 |
Ho PP , Fontoura P , Platten M , Sobel RA , DeVoss JJ , Lee LY , Kidd BA , Tomooka BH , Capers J , Agrawal A , Gupta R , Zernik J , Yee MK , Lee BJ , Garren H , Robinson WH , Steinman L . A suppressive oligodeoxynucleotide enhances the efficacy of myelin cocktail/IL-4-tolerizing DNA vaccination and treats autoimmune disease. J Immunol, 2005, 175: 6226- 6234.
doi: 10.4049/jimmunol.175.9.6226
|
53 |
Ho PP , Fontoura P , Ruiz PJ , Steinman L , Garren H . An immunomodulatory GpG oligonucleotide for the treatment of autoimmunity via the innate and adaptive immune systems. J Immunol, 2003, 171: 4920- 4926.
doi: 10.4049/jimmunol.171.9.4920
|
54 |
Tostanoski LH , Eppler HB , Xia B , Zeng X , Jewell CM . Engineering release kinetics with polyelectrolyte multilayers to modulate TLR signaling and promote immune tolerance. Biomater Sci, 2019, 7: 798- 808.
doi: 10.1039/C8BM01572D
|
55 |
Tostanoski LH , Chiu YC , Andorko JI , Guo M , Zeng X , Zhang P , Royal W 3rd , Jewell CM . Design of polyelectrolyte multilayers to promote immunological tolerance. ACS Nano, 2016, 10: 9334- 9345.
doi: 10.1021/acsnano.6b04001
|
56 |
Hess KL , Andorko JI , Tostanoski LH , Jewell CM . Polyplexes assembled from self-peptides and regulatory nucleic acids blunt toll-like receptor signaling to combat autoimmunity. Biomaterials, 2017, 118: 51- 62.
doi: 10.1016/j.biomaterials.2016.11.052
|
57 |
Duan S , Paulson JC . Siglecs as immune cell checkpoints in disease. Annu Rev Immunol, 2020, 38: 365- 395.
doi: 10.1146/annurev-immunol-102419-035900
|
58 |
Mehta NR , Nguyen T , Bullen JW Jr , Griffin JW , Schnaar RL . Myelin-associated glycoprotein (MAG) protects neurons from acute toxicity using a ganglioside-dependent mechanism. ACS Chem Neurosci, 2010, 1: 215- 222.
doi: 10.1021/cn900029p
|
59 |
Avril T , Attrill H , Zhang J , Raper A , Crocker PR . Negative regulation of leucocyte functions by CD33-related siglecs. Biochem Soc Trans, 2006, 34 (Pt 6): 1024- 1027.
|
60 |
Lin CH , Yeh YC , Yang KD . Functions and therapeutic targets of Siglec-mediated infections, inflammations and cancers. J Formos Med Assoc, 2021, 120 (1 Pt 1): 5- 24.
|
61 |
Loschko J , Heink S , Hackl D , Dudziak D , Reindl W , Korn T , Krug AB . Antigen targeting to plasmacytoid dendritic cells via Siglec-H inhibits Th cell-dependent autoimmunity. J Immunol, 2011, 187: 6346- 6356.
doi: 10.4049/jimmunol.1102307
|
62 |
Perdicchio M , Ilarregui JM , Verstege MI , Cornelissen LA , Schetters ST , Engels S , Ambrosini M , Kalay H , Veninga H , den Haan JM , van Berkel LA , Samsom JN , Crocker PR , Sparwasser T , Berod L , Garcia-Vallejo JJ , van Kooyk Y , Unger WW . Sialic acid-modified antigens impose tolerance via inhibition of T-cell proliferation and de novo induction of regulatory T cells. Proc Natl Acad Sci USA, 2016, 113: 3329- 3334.
doi: 10.1073/pnas.1507706113
|
63 |
Kato M , Neil TK , Fearnley DB , McLellan AD , Vuckovic S , Hart DN . Expression of multilectin receptors and comparative FITC-dextran uptake by human dendritic cells. Int Immunol, 2000, 12: 1511- 1519.
doi: 10.1093/intimm/12.11.1511
|
64 |
Bonifaz L , Bonnyay D , Mahnke K , Rivera M , Nussenzweig MC , Steinman RM . Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class Ⅰ products and peripheral CD8+ T cell tolerance. J Exp Med, 2002, 196: 1627- 1638.
doi: 10.1084/jem.20021598
|
65 |
Bemani P , Jalili S , Hassanpour K , Faraji F , Gholijani N , Barazesh M , Mohammadi M , Farnoosh G . Designing and characterization of Tregitope-based multi-epitope vaccine against multiple sclerosis: an immunoinformatic approach. Curr Drug Saf, 2023, 18: 79- 92.
doi: 10.2174/1574886317666220429105439
|
66 |
Hawiger D , Masilamani RF , Bettelli E , Kuchroo VK , Nussenzweig MC . Immunological unresponsiveness characterized by increased expression of CD5 on peripheral T cells induced by dendritic cells in vivo. Immunity, 2004, 20: 695- 705.
doi: 10.1016/j.immuni.2004.05.002
|
67 |
Ring S , Maas M , Nettelbeck DM , Enk AH , Mahnke K . Targeting of autoantigens to DEC205+ dendritic cells in vivo suppresses experimental allergic encephalomyelitis in mice. J Immunol, 2013, 191: 2938- 2947.
doi: 10.4049/jimmunol.1202592
|
68 |
Idoyaga J , Fiorese C , Zbytnuik L , Lubkin A , Miller J , Malissen B , Mucida D , Merad M , Steinman RM . Specialized role of migratory dendritic cells in peripheral tolerance induction. J Clin Invest, 2013, 123: 844- 854.
|
69 |
Stern JN , Keskin DB , Kato Z , Waldner H , Schallenberg S , Anderson A , von Boehmer H , Kretschmer K , Strominger JL . Promoting tolerance to proteolipid protein-induced experimental autoimmune encephalomyelitis through targeting dendritic cells. Proc Natl Acad Sci USA, 2010, 107: 17280- 17285.
doi: 10.1073/pnas.1010263107
|
70 |
Kato M , McDonald KJ , Khan S , Ross IL , Vuckovic S , Chen K , Munster D , MacDonald KP , Hart DN . Expression of human DEC-205(CD205) multilectin receptor on leukocytes. Int Immunol, 2006, 18: 857- 869.
doi: 10.1093/intimm/dxl022
|
71 |
Engering AJ , Cella M , Fluitsma D , Brockhaus M , Hoefsmit EC , Lanzavecchia A , Pieters J . The mannose receptor functions as a high capacity and broad specificity antigen receptor in human dendritic cells. Eur J Immunol, 1997, 27: 2417- 2425.
doi: 10.1002/eji.1830270941
|
72 |
Chieppa M , Bianchi G , Doni A , Del Prete A , Sironi M , Laskarin G , Monti P , Piemonti L , Biondi A , Mantovani A , Introna M , Allavena P . Cross-linking of the mannose receptor on monocyte-derived dendritic cells activates an anti-inflammatory immunosuppressive program. J Immunol, 2003, 171: 4552- 4560.
doi: 10.4049/jimmunol.171.9.4552
|
73 |
Kel J , Oldenampsen J , Luca M , Drijfhout JW , Koning F , Nagelkerken L . Soluble mannosylated myelin peptide inhibits the encephalitogenicity of autoreactive T cells during experimental autoimmune encephalomyelitis. Am J Pathol, 2007, 170: 272- 280.
doi: 10.2353/ajpath.2007.060335
|
74 |
Kel JM , Slütter B , Drijfhout JW , Koning F , Nagelkerken L . Mannosylated self-peptide inhibits the development of experimental autoimmune encephalomyelitis via expansion of nonencephalitogenic T cells. J Leukoc Biol, 2008, 84: 182- 190.
doi: 10.1189/jlb.0507312
|
75 |
Idoyaga J , Cheong C , Suda K , Suda N , Kim JY , Lee H , Park CG , Steinman RM . Cutting edge: langerin/CD207 receptor on dendritic cells mediates efficient antigen presentation on MHC Ⅰ and Ⅱ products in vivo. J Immunol, 2008, 180: 3647- 3650.
doi: 10.4049/jimmunol.180.6.3647
|
76 |
Azukizawa H , Döhler A , Kanazawa N , Nayak A , Lipp M , Malissen B , Autenrieth I , Katayama I , Riemann M , Weih F , Berberich-Siebelt F , Lutz MB . Steady state migratory RelB+ langerin+ dermal dendritic cells mediate peripheral induction of antigen-specific CD4+ CD25+ Foxp3+ regulatory T cells. Eur J Immunol, 2011, 41: 1420- 1434.
doi: 10.1002/eji.201040930
|
77 |
King IL , Kroenke MA , Segal BM . GM-CSF-dependent, CD103+ dermal dendritic cells play a critical role in Th effector cell differentiation after subcutaneous immunization. J Exp Med, 2010, 207: 953- 961.
doi: 10.1084/jem.20091844
|
78 |
Flacher V , Tripp CH , Mairhofer DG , Steinman RM , Stoitzner P , Idoyaga J , Romani N . Murine Langerin+ dermal dendritic cells prime CD8+ T cells while Langerhans cells induce cross-tolerance. EMBO Mol Med, 2014, 6: 1191- 1204.
doi: 10.15252/emmm.201303283
|
79 |
Bigley V , McGovern N , Milne P , Dickinson R , Pagan S , Cookson S , Haniffa M , Collin M . Langerin-expressing dendritic cells in human tissues are related to CD1c+ dendritic cells and distinct from Langerhans cells and CD141high XCR1+ dendritic cells. J Leukoc Biol, 2015, 97: 627- 634.
doi: 10.1189/jlb.1HI0714-351R
|
80 |
Soilleux EJ , Morris LS , Leslie G , Chehimi J , Luo Q , Levroney E , Trowsdale J , Montaner LJ , Doms RW , Weissman D , Coleman N , Lee B . Constitutive and induced expression of DC-SIGN on dendritic cell and macrophage subpopulations in situ and in vitro. J Leukoc Biol, 2002, 71: 445- 457.
doi: 10.1189/jlb.71.3.445
|
81 |
Feinberg H , Mitchell DA , Drickamer K , Weis WI . Structural basis for selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR. Science, 2001, 294: 2163- 2166.
doi: 10.1126/science.1066371
|
82 |
Geijtenbeek TB , Torensma R , van Vliet SJ , van Duijnhoven GC , Adema GJ , van Kooyk Y , Figdor CG . Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell, 2000, 100: 575- 585.
doi: 10.1016/S0092-8674(00)80693-5
|
83 |
Geijtenbeek TB , Krooshoop DJ , Bleijs DA , van Vliet SJ , van Duijnhoven GC , Grabovsky V , Alon R , Figdor CG , van Kooyk Y . DC-SIGN-ICAM-2 interaction mediates dendritic cell trafficking. Nat Immunol, 2000, 1: 353- 357.
doi: 10.1038/79815
|
84 |
Gringhuis SI , den Dunnen J , Litjens M , van der Vlist M , Geijtenbeek TB . Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nat Immunol, 2009, 10: 1081- 1088.
doi: 10.1038/ni.1778
|
85 |
Engering A , Geijtenbeek TB , van Vliet SJ , Wijers M , van Liempt E , Demaurex N , Lanzavecchia A , Fransen J , Figdor CG , Piguet V , van Kooyk Y . The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells. J Immunol, 2002, 168: 2118- 2126.
doi: 10.4049/jimmunol.168.5.2118
|
86 |
Gringhuis SI , Kaptein TM , Wevers BA , Mesman AW , Geijtenbeek TB . Fucose-specific DC-SIGN signalling directs T helper cell type-2 responses via IKKε- and CYLD-dependent Bcl3 activation. Nat Commun, 2014, 5: 3898.
doi: 10.1038/ncomms4898
|
87 |
Arosio D , Chiodo F , Reina JJ , Marelli M , Penadés S , van Kooyk Y , Garcia-Vallejo JJ , Bernardi A . Effective targeting of DC-SIGN by α-fucosylamide functionalized gold nanoparticles. Bioconjug Chem, 2014, 25: 2244- 2251.
doi: 10.1021/bc500467u
|
88 |
Stead SO , Kireta S , McInnes SJP , Kette FD , Sivanathan KN , Kim J , Cueto-Diaz EJ , Cunin F , Durand JO , Drogemuller CJ , Carroll RP , Voelcker NH , Coates PT . Murine and non-human primate dendritic cell targeting nanoparticles for in vivo generation of regulatory T-cells. ACS Nano, 2018, 12: 6637- 6647.
doi: 10.1021/acsnano.8b01625
|
89 |
Bates EE , Fournier N , Garcia E , Valladeau J , Durand I , Pin JJ , Zurawski SM , Patel S , Abrams JS , Lebecque S , Garrone P , Saeland S . APCs express DCIR, a novel C-type lectin surface receptor containing an immunoreceptor tyrosine-based inhibitory motif. J Immunol, 1999, 163: 1973- 1983.
doi: 10.4049/jimmunol.163.4.1973
|
90 |
Meyer-Wentrup F , Benitez-Ribas D , Tacken PJ , Punt CJ , Figdor CG , de Vries IJ , Adema GJ . Targeting DCIR on human plasmacytoid dendritic cells results in antigen presentation and inhibits IFN-alpha production. Blood, 2008, 111: 4245- 4253.
doi: 10.1182/blood-2007-03-081398
|
91 |
Seno A , Maruhashi T , Kaifu T , Yabe R , Fujikado N , Ma G , Ikarashi T , Kakuta S , Iwakura Y . Exacerbation of experimental autoimmune encephalomyelitis in mice deficient for DCIR, an inhibitory C-type lectin receptor. Exp Anim, 2015, 64: 109- 119.
doi: 10.1538/expanim.14-0079
|
92 |
Tabansky I , Keskin DB , Watts D , Petzold C , Funaro M , Sands W , Wright P , Yunis EJ , Najjar S , Diamond B , Cao Y , Mooney D , Kretschmer K , Stern JNH . Targeting DEC-205-DCIR2+ dendritic cells promotes immunological tolerance in proteolipid protein-induced experimental autoimmune encephalomyelitis. Mol Med, 2018, 24: 17.
|
93 |
Huysamen C , Willment JA , Dennehy KM , Brown GD . CLEC9A is a novel activation C-type lectin-like receptor expressed on BDCA3+ dendritic cells and a subset of monocytes. J Biol Chem, 2008, 283: 16693- 16701.
doi: 10.1074/jbc.M709923200
|
94 |
Sancho D , Joffre OP , Keller AM , Rogers NC , Martínez D , Hernanz-Falcón P , Rosewell I , Reis e Sousa C . Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature, 2009, 458: 899- 903.
doi: 10.1038/nature07750
|
95 |
Schreibelt G , Klinkenberg LJ , Cruz LJ , Tacken PJ , Tel J , Kreutz M , Adema GJ , Brown GD , Figdor CG , de Vries IJ . The C-type lectin receptor CLEC9A mediates antigen uptake and (cross-) presentation by human blood BDCA3+ myeloid dendritic cells. Blood, 2012, 119: 2284- 2292.
doi: 10.1182/blood-2011-08-373944
|
96 |
Joffre OP , Sancho D , Zelenay S , Keller AM , Reis e Sousa C . Efficient and versatile manipulation of the peripheral CD4+ T-cell compartment by antigen targeting to DNGR-1/CLEC9A. Eur J Immunol, 2010, 40: 1255- 1265.
doi: 10.1002/eji.201040419
|
97 |
Lahoud MH , Proietto AI , Ahmet F , Kitsoulis S , Eidsmo L , Wu L , Sathe P , Pietersz S , Chang HW , Walker ID , Maraskovsky E , Braley H , Lew AM , Wright MD , Heath WR , Shortman K , Caminschi I . The C-type lectin Clec12A present on mouse and human dendritic cells can serve as a target for antigen delivery and enhancement of antibody responses. J Immunol, 2009, 182: 7587- 7594.
doi: 10.4049/jimmunol.0900464
|
98 |
Sagar D , Singh NP , Ginwala R , Huang X , Philip R , Nagarkatti M , Nagarkatti P , Neumann K , Ruland J , Andrews AM , Ramirez SH , Khan ZK , Jain P . Antibody blockade of CLEC12A delays EAE onset and attenuates disease severity by impairing myeloid cell CNS infiltration and restoring positive immunity. Sci Rep, 2017, 7: 2707.
doi: 10.1038/s41598-017-03027-x
|
99 |
Pishesha N , Harmand T , Smeding LY , Ma W , Ludwig LS , Janssen R , Islam A , Xie YJ , Fang T , McCaul N , Pinney W 3rd , Sugito HR , Rossotti MA , Gonzalez-Sapienza G , Ploegh HL . Induction of antigen-specific tolerance by nanobody-antigen adducts that target class-Ⅱ major histocompatibility complexes. Nat Biomed Eng, 2021, 5: 1389- 1401.
doi: 10.1038/s41551-021-00738-5
|